首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

2.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

3.
基于簇模型采用密度泛函理论在B3LYP/6-311+G**/LANL2DZ(metal)基组水平上计算了吡啶及α-吡啶基吸附于Pt、Pd、Rh、Ni四种金属表面的红外和拉曼光谱. 通过详细地分析和比较计算结果与文献报道的实验谱图, 提出了以N端吸附的吡啶分子和α-吡啶基这两种表面物种各自存在的谱学判据. 计算结果表明在以上四种金属表面, α-吡啶基的拉曼活性比吡啶的小, 而特征谱峰的红外强度与吡啶相当. 该结果表明红外光谱是检测金属表面α-吡啶基的有效手段, 也解释了采用表面增强拉曼光谱和红外光谱研究吡啶吸附在金属表面得出不同结构的原因.  相似文献   

4.
赵岷  张元  王璐 《物理化学学报》2011,27(3):584-588
采用密度泛函理论B3LYP/6-31G*方法, 对一系列含咔唑生色团的有机芳香杂环分子进行结构优化, 并采用有限场(FF)和含时密度泛函理论(TD-DFT)方法在6-311G**水平上探讨了体系的二阶非线性光学(NLO)性质和电子光谱. 结果表明, 咔唑取代基推或拉电子能力的改变和引入芳香杂环对研究分子的极化率α和二阶NLO系数β值都有较大影响. 当取代基分别连有拉电子硝基和推电子羟基, 以及引入呋喃杂环都可以使体系分子的β值随分子的最大吸收波长λmax的增大而减小(蓝移). 该系列化合物兼具有很大的二阶非线性响应与良好的透光范围, 避免了“非线性-透光性”矛盾, 可能在非线性材料领域中有很大的潜在应用价值.  相似文献   

5.
设计采用新颖的Pummerer-氰化路线和用亚硫酰氯作S-转移试剂的路线合成了第一例全部连吸电子基的噻吩并[3,4-c]噻吩. 用1H NMR, 13C NMR, FTIR, 元素分析和X射线衍射分析进行了表征. 用B3LYP/6-31G*及B3LYP/6- 311++G**方法全优化计算了1,3-二甲氧甲酰-4,6-二氰基吩并[3,4-c]噻吩分子, 得到几何构型、总能量、标准熵、标准焓和标准自由能, 计算构型与X射线衍射测定结果非常吻合. 并用电荷分布讨论了有关非经典噻吩并[3,4-c]噻吩体系的稳定性, 计算结果能很好地解释有关实验现象.  相似文献   

6.
用量子化学密度泛函方法, 在B3LYP/6-31G*水平下研究了叔丁基氧自由基(CH3)3CO和一氧化碳CO气体的反应机理. 为了得到更可靠的能量值, 在CCSD(T)/6-31++G**水平下做了单点能计算. 研究表明, 该反应是一个多通道反应. (CH3)3CO自由基与CO作用主要生成(CH3)3C + CO2. 这对于消除大气污染起到一定的作用.  相似文献   

7.
魏婧  程文旦 《物理化学学报》2013,29(10):2215-2220
采用密度泛函理论(DFT)-B3LYP方法在6-31G*基组水平上,对芳香性氨基酸分子体系(Phe, [Phe―H]-,PheH*, Tyr, [Tyr―H]-, TyrH+, Trp, [Trp―H]-和TrpH+)进行结构优化. 在优化所得构型的基础上, 利用含时密度泛函理论(TDDFT)-B3LYP在6-31G*基组上计算了它们的激发态性质,并结合态求和方法研究了它们在二次谐波过程中的二阶极化率值. 同时讨论了二次谐波非线性光学响应的起源及其产生变化的原因. 计算结果表明,相对于中性的氨基酸分子, 去质子化和质子化后的氨基酸分子的二阶极化率值都有明显的增加, 且符合规律Phe < PheH+ < [Phe―H]-和Tyr < TyrH+ < [Tyr―H]-. 通过对它们电极化起源的分析, 我们得到对于中性氨基酸分子, 侧链芳香环上的π→π*跃迁对二阶极化率起主要贡献; 对去质子化和质子化后的氨基酸分子, 吲哚环上的π→π*电荷跃迁和α碳原子相连的氨基和羧基基团内电荷跃迁对二阶极化率起到同样重要的贡献.  相似文献   

8.
研究了复合物Mg-NCSCH3在230~440 nm波段和Ca-NCSCH3在320~560 nm波段的光解离光谱. 复合物Mg-NCSCH3, Ca-NCSCH3光诱导反应的产物质谱表明有非反应猝灭产物Mg(Ca), C—S键断裂产物Mg(Ca)NC 和Mg(Ca)NCS以及重排反应产物Mg(Ca)-CHSH通道. 在原子跃迁谱线(32S→32P, 对于Mg; 42S?42P, 对于Ca)的红和蓝两边, Mg-NCSCH3的光解离光谱由两个宽峰组成; 而对于Ca-NCSCH3, 则是由三个谱峰构成. CIS/6-311++G**等级上, 对应于基态构型的Mg-NCSCH3电子态跃迁能量和振子强度与实验光谱较为一致; 而Ca-NCSCH3有较大的差别. 这是因为CIS方法忽略电子相关效应, 而Ca-based的跃迁中3d和4s轨道间存在较强的混合所致.  相似文献   

9.
研究了复合物Mg-NCSCH3在230~440 nm波段和Ca-NCSCH3在320~560 nm波段的光解离光谱. 复合物Mg-NCSCH3, Ca-NCSCH3光诱导反应的产物质谱表明有非反应猝灭产物Mg(Ca), C—S键断裂产物Mg(Ca)NC 和Mg(Ca)NCS以及重排反应产物Mg(Ca)-CHSH通道. 在原子跃迁谱线(32S→32P, 对于Mg; 42S?42P, 对于Ca)的红和蓝两边, Mg-NCSCH3的光解离光谱由两个宽峰组成; 而对于Ca-NCSCH3, 则是由三个谱峰构成. CIS/6-311++G**等级上, 对应于基态构型的Mg-NCSCH3电子态跃迁能量和振子强度与实验光谱较为一致; 而Ca-NCSCH3有较大的差别. 这是因为CIS方法忽略电子相关效应, 而Ca-based的跃迁中3d和4s轨道间存在较强的混合所致.  相似文献   

10.
苯硝化反应机理及其溶剂效应的理论研究   总被引:3,自引:1,他引:3       下载免费PDF全文
在密度泛函理论(DFT)非限制B3LYP/6-311G**水平上, 求得苯与硝酰阳离子(NO2+ )硝化反应势能面上的π-过渡态、σ-过渡态, 以及由这两个过渡态通过内禀反应坐标(IRC)计算所得σ-反应络合物和σ-中间体(Wheland中间体)的全优化几何构型、电子结构、IR光谱和热力学性质, 确认了反应通道, 阐明了在亲电取代过程中无同位素效应的实验事实; 求得气相中反应的活化能为8.370 kJ/mol, 速率常数数量级为1010 mol-1·s-1. 从热力学和动力学两方面阐明了苯硝化的亲电取代机理优于单电子转移双自由基机理. 通过自洽反应场(SCRF)B3LYP/6-311G**计算, 系统研究了相对介电常数分别为5.0, 25.0, 50.0和78.5的溶剂对苯与NO2+反应过程中各驻点的结构和反应机理的影响, 发现溶剂效应使气相中形成σ-过渡态(速控步骤)的活化能下降, 并使该步骤在水溶液中成为无垒反应. 此外还揭示了实验与理论共同关心的Wheland中间体的电荷分布、偶极矩、前线轨道能级差与溶剂稳定化能之间存在的良好线性关系.  相似文献   

11.
In this research, two-electron reduction potentials are calculated for a set of eight quinones using Density Functional Theory (DFT) at B1B95/6-31G** and B1B95/6-311++G** levels in aqueous solution. Two different mechanisms, direct and indirect, which have been presented before, are employed for these calculations. DPCM and CPCM models of solvation are carried out to include solution phase contribution. The results show that CPCM is properly matched with DFT method at the B1B95 level in both direct and indirect mechanisms. It is found that direct mechanism gives more accurate two-electron reduction potentials in comparison to indirect mechanism. Mean Absolute Deviation (MAD) obtained through indirect mechanism and CPCM model of solvation are about 0.041 and 0.022 V for 6-31G** and 6-311++G**, respectively. The MAD values of direct mechanism are about 0.024 and 0.018 V for 6-31G** and 6-311++G** basis sets, respectively. The calculated MAD for both direct and indirect mechanisms is comparable with MAD previously reported at MP3 level for this set of molecules.  相似文献   

12.
An extensive computational study on the conformations of gaseous dipeptide glycinearginine, GlyArg, has been performed. A large number of trail structures were generated by systematically sampling the potential energy surface (PES) of GlyArg. The trial structures were successively optimized with the methods of PM3, HF/3-21G*, BHandHLYP/6-31G*, and BHandHLYP/6-311++G** in order to reliably find the low energy conformations. The conformational energies were finally determined with the methods of BHandHLYP, camB3LYP, B97D, and MP2 using the basis set of 6-311++G(3df,3pd). The results establish firmly that gaseous GlyArg exists primarily in its canonical form, in sharp contrast with ArgGly that adopts the zwitterionic form. Important data such as the rotational constants, dipole moments, vertical ionization energies, temperature distributions and IR spectra of the low energy conformers are represented for the understanding of the future experiments. Moreover, considering the global minima of all amino acids and many dipeptides, combined with the hydrophobicities of amino acids, a model predicting whether the global minimum configuration of a dipeptide is canonical or zwitterionic is developed.  相似文献   

13.
The structural characteristics and substituent effects of o-Chloronitrobenzene, m-Chloronitrobenzene and p-Chloronitrobenzene have been analysed by experimental FTIR, FT-Raman and FT-NMR spectroscopic studies. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESPs). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values.  相似文献   

14.
Polyynes and cumulenes from 2–12 atoms have been calculated at the B3LYP/6-311++G** level and their energies compared using an isodesmic reaction. The chain length has been modeled empirically affording an equation that predicts substantial variation for long chains.  相似文献   

15.
The gradient pathways of the reaction of nucleophilic addition of ammonia to formaldehyde were calculated for free molecules and in the NH3...H2CO...HC(O)OH complex by theab initio RHF/6-31G**, MP2(fc)/6-31G**, and MP2(full)/6-311++G** methods. Both reactions proceed concertedly. In the first case, the reaction successively passes through two transitional states with an energy barrier exceeding 35 kcal mol−1. In the case of the complex with formic acid, the reaction follows a conventional pathway, although its activation barrier calculated by the RHF/6-31G** and MP2(fc)/6-31G** methods decreases to 12.6 and 3.8 kcal mol−1, respectively. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 13–20, January, 1998.  相似文献   

16.
The complete topological structure of the potential energy surface (PES) of methane in the inversion region was studied by theab initio CCD(full)/6-311++G** method. The necessity of taking into account nuclear motions was shown. Penta- and hexacoordination of carbon atoms in boron-containing organic compounds was investigated by theab initio MP2(full)/6-31G** and MP2(full)/6-311++G** methods. The CB4H4Li2, CB6N2H2, and CB6O2 systems containing hexacoordinated carbon atoms correspond to rather deep minima on the relevant PES and can be the subject of synthetic studies. According to theab initio calculations, pyramidal boron-containing systems with hypercoordinated carbon atoms, which fulfill the “8e rule,” also correspond to rather deep PES minima and can be detected experimentally. Dedicated to Academician V. I. Minkin on the occasion of his 65th birthday. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 786–796, May, 2000  相似文献   

17.
Ab initio calculations of the structure, atomic charges, natural bond orbital and thermodynamic functions have been performed at HF/6-311G** and B3LYP/6-311G** levels of theory for the title compound of 4-phenyl-1-(1-phenylethylidene) thiosemicarbazide. The calculated results show that the sulfur atom and all of the nitrogen atoms have bigger negative charges and that they are the potential sites to react with the metallic ions, which make the title compound a multidentate ligand. The coordination ability of the sulfur atom and the nitrogen atom of C=N double bond increases with the increase of polarity of the solvent. Electronic absorption spectra have been calculated by time-dependent density functional theory (TD-DFT) method. The calculation of the second-order optical nonlinearity has also been carried out with the PM3 semi-empirical method, resulting in the molecular hyperpolarisability is 5.477×10−30 esu.  相似文献   

18.
Four ground state triplet silylenes are found among 30 possible silylenic XHSi3 structures (X = H, F, Cl and Br), at seven ab initio and DFT levels including: B3LYP/6-311++G∗∗, HF/6-311++G∗∗, MP3/6-311G, MP2/6-311+G∗∗, MP4(SDTQ)/6-311++G∗∗, QCISD(T)/6-311++G∗∗ and CCSD(T)/6-311++G∗∗. The latter six methods indicate that the triplet states of 3-flouro-1,2,3-trisilapropadienylidene, 1-chloro-1,2,3-trisilapropargylene and 3-chloro-1,2,3-trisilapropargylene are energy minima. These triplets appear more stable than their corresponding singlet states which cannot even exist for showing negative force constants. Also, triplet state of 1-flouro-1,2,3-trisilapropargylene is possibly accessible for being an energy minimum, since its corresponding singlet state is not a real isomer. Some discrepancies are observed between energetic and/or structural results of DFT vs. ab initio data.  相似文献   

19.
The title compound of p-trifluoromethylphenyl thioacid amide has been synthesized in one step and characterized by elemental analysis, UV and X-ray single crystal diffraction. Ab initio calculations indicate that both HF/6-311G** and B3LYP/6-311G** methods can reproduce the title compound well. Electronic absorption spectra calculated by the time-dependent density functional theory (TD-DFT) show that the two absorption bands are mainly derived from the contribution of bands π → π*. Thermodynamic properties of the title compound have been predicted based on the optimized structure. The calculation of the second order optical nonlinearity also has been carried out, and the molecular hyperpolarizability is 2.31770 × 10−30 esu.  相似文献   

20.
Four 9H and four 7H tautomers of DNA base xanthine were studied by the ab initio LCAO-MO method at the MP2/6-311G**//HF/6-31G** and MP2/6-31G**//HF/6-31G** approximations. All calculated structures are minima at the HF/6-31G** potential energy surface with the dioxo 7H tautomer (A1) being the global minimum. The second most stable tautomer, dioxo-9H (B1) is by 9 kcal/mol less stable. For the A1 B1 transition the calculated MP2 energy gap corresponds to the equilibrium constant of 2 × 10–7. Therefore, only the major tautomeric form A1 is predicted to be detectable in the gas phase. The 7H and 9H groups of tautomers are discussed separately. Within both groups, the dioxo form (A1-7H, B1-9H) is the most stable one and is succeeded by the 2-dihydroxy (A2, B2) form. However, while the energy difference between A1 and A2 is 10 kcal/mol, the energy difference between B1 a B2 is only 2 kcal/mol. The effect of polar environment was estimated by the SCRF method, using a spherical cavity, at the HF/6-31G** level. These calculations did not change the gas phase stability order of the tautomers. However, the energy difference between A1 and B1 decreased from 9 kcal/mol at the HF/6-31G** level to 4 kcal/mol at the SCRF HF/6-31G** level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号