首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Singlet-triplet energy gaps in cyclopenta-2,4-dienylidene, as well as its 2- or 3-halogenated derivatives, are compared and contrasted with their sila, germa, stana, and plumba analogues; at HF/6-31G* and B3LYP/ 6-311++G(3df, 2p) levels of theory. Energy gaps (ΔGt-s), between triplet (t) and singlet (s) states, appear linearly proportional to: (i) the size of the group 14 divalent element (M = C, Si, Ge, Sn and Pb), (ii) the angle ∠C-M-C, and (iii) the ΔG(LUMO-HOMO) of the singlet state involved. The magnitude of ΔGt-s, for each 2- and/or 3-substituted species studied, increases with an order of: carbenes < silylenes < germylenes < stanylenes < plumbylenes. This order reverses for the barriers of the ring puckering. The puckering occurs with more ease for every singlet, compared to its corresponding triplet form.Regardless of the group 14 element (M) employed, every 3-halo-substituted species is more stable than the corresponding 2-halo-substituted isomer. For M = Pb, Sn and/or Ge; 3-halo-substituted species have higher ΔGt-s than their corresponding 2-halo-substituted analogues. For M = Si, similar ΔGt-s are found for 2- and 3-halogenated isomers. For M = C, 3-halo-substituted species have lower ΔGt-s than their corresponding 2-halo-substituted analogues.Every cyclic singlet has a larger ∠C-M-C angle, than its corresponding cyclic triplet state, except for 3-halosilacyclopenta-2,4-dienylidenes where triplet has a larger ∠C-M-C angle than its corresponding singlet state.  相似文献   

2.
Antonios Kolocouris 《Tetrahedron》2009,65(45):9428-9435
Dynamic NMR spectroscopy and ab initio correlated calculations revealed that the attachment of a spiroadamantane entity at the C-2 position of N-methylpyrrolidine or N-methylpiperidine induces a severe steric crowding around nitrogen, which changes the conformational space of the heterocycle resulting in: (a) the complete destabilization of the N-Me(eq) conformer in spiranic structures; in contrast the N-Me(eq) conformer corresponds to the global minimum in N-methylpyrrolidine or N-methylpiperidine. The spiroadamantane structure raises the energy of the equatorial conformer because of the severe van der Waals repulsion between the N-Me(eq) group and adamantane C-H bonds. (b) The interconversion between the only populated enantiomeric N-Me(ax) conformers ax→[eq]→ax′; the interconversion eq→ax between N-Me(eq) and N-Me(ax) conformers, which are both populated, is observed in N-methylpyrrolidine or N-methylpiperidine. (c) The raising of ring and nitrogen inversion barriers ax→ts by ∼4-6 kcal mol−1. The dynamic NMR study provides evidence that the most important process required for the enantiomerization between the axial N-Me conformers in spiropiperidine 4 and spiropyrrolidine 5 are different, i.e., a nitrogen inversion in 5 (9.10 kcal mol−1) and a ring inversion in 4 (15.2 kcal mol−1). While an enantiomerization interconverts N-Me axial conformers in spiropiperidine 5 and spiropyrrolidine 4, substitution of the pyrrolidine ring of 5 with a C-Me group effects a diastereomerization between two N-Me axial conformers and reduces effectively the nitrogen inversion barrier according to the protonation experiments and the calculations. In general, all the calculations levels used, i.e., the MM3, B3LYP/6-31+G∗∗ and MP2/6-311++G∗∗//B3LYP/6-31+G∗∗, predict correctly the different stability of the local minima; however only MP2/6-311++G∗∗//B3LYP/6-31+G∗∗ was found to be reliable for the calculation of the nitrogen inversion barriers.  相似文献   

3.
Density functional theory (DFT) calculations have been used to study the isomerization process in the NC3P system. At the DFT/B3LYP/6-311G(d) level, 28 triplet and 28 singlet minima were obtained on their respective potential energy surfaces. The linear triplet 3NCCCP is the lowest-energy structure among the isomers. On the triplet PES, only linear isomers 3NCCCP, 3CNCCP, 3CCCNP, and 3CCNCP possess great kinetic and thermodynamic stabilities to exist under low-temperature conditions (such as in the dense interstellar clouds). At the same time, one chain-like and four three-membered-ring isomers on the singlet PES have been located with high kinetic and thermodynamic stabilities. Further CCSD(T)/6-311G(2df)//QCISD/6-311G(d), CCSD(T)/cc-pVTZ//DFT/B3LYP/cc-pVTZ, and CASPT2(14,12)/cc-pVQZ//CASSCF(14,12)/cc-p VQZ calculations are performed on the structures, frequencies, and energies of the relevant species. The bonding natures were analyzed and the results were compared with the analogous NC3N and NC2P molecules so as to aid their future experimental or astrophysical detection.  相似文献   

4.
The gradient pathways of the reaction of nucleophilic addition of ammonia to formaldehyde were calculated for free molecules and in the NH3...H2CO...HC(O)OH complex by theab initio RHF/6-31G**, MP2(fc)/6-31G**, and MP2(full)/6-311++G** methods. Both reactions proceed concertedly. In the first case, the reaction successively passes through two transitional states with an energy barrier exceeding 35 kcal mol−1. In the case of the complex with formic acid, the reaction follows a conventional pathway, although its activation barrier calculated by the RHF/6-31G** and MP2(fc)/6-31G** methods decreases to 12.6 and 3.8 kcal mol−1, respectively. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 13–20, January, 1998.  相似文献   

5.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

6.
Spectroscopic and theoretical studies were carried out for O,O,O-trimethyl selenophosphate molecule. DFT structural and vibrational calculations were performed at 6-311++G∗∗ level. Ar/matrix-FTIR spectra were recorded. A coexistence of different conformers with C3 and C1 symmetries was detected at different temperatures. Spectral evidence of a lower energy Cs conformer was found. These conclusions are consistent with the results from DFT calculations. A tentative assignment of the features observed in the Ar/matrix-FTIR spectra is proposed.  相似文献   

7.
The reaction of deactivated arenes with tribromoisocyanuric acid (TBCA) in 98% H2SO4 produced bromoarenes in good yields. The acidity of the medium controls the strength of the brominating agent and the amount of polybrominated products. DFT calculations at B3LYP/6-311++G∗∗ level showed that the protonated TBCA (a superelectrophilic species) can easily transfer Br+ to deactivated arenes, in order to decrease internal charge-charge repulsion.  相似文献   

8.
Enthalpies of formation of F2SO, F2SO2, FClSO and FClSO2 molecules have been determined using ab initio molecular orbital theory and density functional theory (DFT) calculations. Different DFT approaches and levels of the Gaussian-3 and the complete basis set (CBS) ab initio model chemistries have been employed to calculate enthalpies of formation from both total atomization energies and isodesmic reaction schemes. The best values at 298 K for F2SO, F2SO2, FClSO and FClSO2 as derived from an average of G3, G3B3, CBS-Q and CBS-QB3 isodesmic energies are −140.6, −181.1, −92.6 and −132.3 kcal mol−1, respectively. The results obtained suggest that the accumulated small component errors found in the DFT-based methods are significantly reduced at the ab initio levels employed. Structural properties, harmonic vibrational frequencies, mode assignations and infrared intensities derived from B3LYP and mPW1PW91 functional with the 6-311+G(3df) basis set are presented.  相似文献   

9.
Relative stabilities and singlet–triplet energy differences are calculated for 24 C2NX azacarbenes (where X is H, F, Cl, and Br). Three skeletal arrangements are employed including azacyclopropenylidene, [(imino)methylene]carbene, and cyanocarbene. Halogens appear to alternate the electronic ground states of C2NH azacarbenes, from triplet to singlet states, at MP3/6‐311++G**, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, MP4(SDTQ)/6‐311++G**, QCISD(T)/6‐311++G**, CCSD(T)/6‐311++G**, CCSD(T)/cc‐pVTZ, G1, and G2 levels of theory. The aromatic characters of singlet cyclic azacyclopropenylidenes are measured using GIAO–NICS calculations. Linear correlations are found between the B3LYP/6‐311++G** calculated LUMO–HOMO energy gaps (ΔEHOMO ‐ LUMO) of the singlet carbenes versus their corresponding singlet–triplet energy separations (ΔE). Electrophilic characters are found for all singlet azacarbenes in their addition reactions to alkenes with the highest electrophilicity being exhibited for X = F. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:377–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20442  相似文献   

10.
In this work, the experimental and theoretical vibrational spectra of 2-chloro-4-methylaniline (2Cl4MA, C7H8NCl) were studied. FT-IR and FT-Raman spectra of 2Cl4MA in the liquid phase have been recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock (HF) and density functional method (B3LYP) with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p) and 6-311G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) basis sets. The vibrational frequencies have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The DFT-B3LYP/6-311++G(d,p) calculations have been found more reliable than the ab initio HF/6-311++G(d,p) calculations for the vibrational study of 2Cl4MA. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of aniline and p-methylaniline molecules.  相似文献   

11.
A systematic study has been carried out for the determination and characterization of the lowest states of Pd, Pd2, and Pd3 using some of the best ab initio tools available at present (conventional and DFT). Full electron ab initio calculations using the HF, MP2, MP3, MP4, and QCI methods were compared with DFT methods using several gradient-corrected functionals as well as the hybrid B3LYP functional that performed very well for the energetics studies of these small clusters. A suitable basis set has been found to perform considerably well with palladium atoms, another of double-ζ quality has been found insufficient to reproduce basic characteristics of the smallest palladium clusters. The results indicate that the ground state for Pd is a singlet. The dimer is a triplet; however, it is very difficult to ascertain due to the closeness between singlet and triplet states (0.9 kcal/mol). The trimer ground state was found to be a triplet with a separation from the lowest singlet of 3.2 kcal/mol. The lowest triplet and singlet of Pd3 were practically equilateral triangles. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
The cyclooctatetraenyl dianion (C8H82−) π-conjugated system forms a stable complex system with alkali and some transition metals. The results of vibrational analysis for C8H8M2 (M = Na, K) complexes were reported here. The geometries of C8H8M2 (M = Na, K) were optimized using ab initio (HF, MP2, CCSD(T)) and DFT (B3LYP) methods with 6-311G** and 6-311++G** basis sets and the harmonic frequencies were obtained. To reproduce and compare with the experimental values the structurally similar molecules C5H5M (M = Na, K) and benzene were studied. The scale factors obtained from these systems were applied to predict the experimental frequencies of C8H8M2 (M = Na, K). The force field and vibrational spectra are analyzed and the most probable assignments are proposed for all the fundamentals based on the potential energy distribution.  相似文献   

13.
The mechanisms for the reaction of CF3O2 with atomic hydrogen were studied with ab initio and DFT methods. The results reveal that the reaction could take place on the singlet and triplet potential energy surfaces (PES). For the singlet PES, addition/elimination and substitution mechanisms are determined, and the former one is dominant. The most favorable channel involves the association of CF3O2 with H atom to form CF3O2H (IM1) via a barrierless process, and then the O–O bond dissociates to give out CF3O + OH. The secondary product might be CF3OH + O, formed from the O–O bond cleavage in the initial adduct CF3O(H)O (IM2). Other products such as CF3 + O2H, HF + CF2O2 and O2 + CHF3 are of no importances because of higher barriers. On the triplet PES, only substitution mechanism is located. With higher barriers involving, the channels on the triplet PES could be negligible compared with the channels on the singlet PES.  相似文献   

14.
The complete topological structure of the potential energy surface (PES) of methane in the inversion region was studied by theab initio CCD(full)/6-311++G** method. The necessity of taking into account nuclear motions was shown. Penta- and hexacoordination of carbon atoms in boron-containing organic compounds was investigated by theab initio MP2(full)/6-31G** and MP2(full)/6-311++G** methods. The CB4H4Li2, CB6N2H2, and CB6O2 systems containing hexacoordinated carbon atoms correspond to rather deep minima on the relevant PES and can be the subject of synthetic studies. According to theab initio calculations, pyramidal boron-containing systems with hypercoordinated carbon atoms, which fulfill the “8e rule,” also correspond to rather deep PES minima and can be detected experimentally. Dedicated to Academician V. I. Minkin on the occasion of his 65th birthday. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 786–796, May, 2000  相似文献   

15.
The geometries and energies of small oxygen containing molecules are studied by both the ab initio and density functional theory (DFT) methods. The RHF, MP2, and QCISD(T) ab initio methods, BHandH, BHandHLYP, BeckeSLYP, Becke3P86 DFT hybrid methods, BLYP, and the BP86 non-local DFT methods with the 3-21G1, 6-31G(d,p), 6-311 + G(2d,2p) and 6-311 + + G(3df,3pd) basis sets were used for the computational study. The obtained results from the different methods were compared to the experimental values. The suitability of the DFT methods for reproducing experimental data were discussed.  相似文献   

16.
Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463-503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 ± 0.8 kcal/mol and 5.2 × 1013 s−1, respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G∗∗ level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin-orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.  相似文献   

17.
Singlet–triplet energy splitting for 24 silylenic reactive intermediates, X–CNSi (where X=H, F, Cl and Br), are compared and contrasted at 11 levels of theory: B1LYP/6-31++G**, B3LYP/6-31++G**, B1LYP/6-311++G**, B3LYP/6-311++G**, MP3/6-31G*, MP3/6-311++G**, MP2/6-31+G**, MP2/6-311++G**, MP4 (SDTQ)/6-311++G**, QCISD(T)/6-311++G** and CCSD(T)/6-311++G**. Each X-substituted silylenic species may either be singlet (s) or triplet (t), with one of the following three structures: 3-X-2-aza-1-silacyclopropenylidene (1s-X, 1t-X); [(X-imino)methylene]silylene (2s-X, 2t-X); and X-cyanosilylene (3s-X, 3t-X). For all X–CNSi species studied, orders of singlet–triplet energy separations (ΔEs-t,X), appear as a function of electro-negativity (F>Cl>Br>H). For the six H–CNSi isomers (X=H), stability order is: 3s-H>1s-H>2t-H>3t-H>2s-H>1t-H. Likewise, stability order for the six isomers with X=F, is: 3s-F>3t-F>1s-F>1t-F>2s-F>2t-F. For X=Cl, the order of stability is: 3s-Cl>1s-Cl>3t-Cl>2t-Cl>1t-Cl>2t-Cl. Finally, the order of stability for six isomers of Br–CNSi is: 3s-Br>3t-Br>1s-Br>2s-Br>2t-Br>1t-Br. The lowest energy minimum, among all 24 species scrutinized, appears to be the singlet acyclic 3s-X. Triplet silylene 2t-H is suggested to be more stable than its corresponding 2s-H at MP3, MP2 and DFT levels of theory. Comparisons between relative stabilities; multiplicities and geometrical parameters of 1–3 are discussed.  相似文献   

18.
Schiff bases derived from 2-hydroxy-1-naphthaldehyde, or 1-hydroxy-2-naphthaldehyde, and different saturated N-aminoheterocycles have been prepared. Their structures have been elucidated in both solution and the solid state, including unequivocal X-ray diffraction analyses. Experimental data evidence the presence of imine (or hydrazone) structures as the most stable tautomers, while all attempts to switch to enamine (or enhydrazine) structures based on electronic and steric considerations were unsuccessful. A complete conformational analysis assisted by DFT calculations at B3LYP/6-31G and M06-2X/6-311++G∗∗ levels has been performed on each series of representative structures.  相似文献   

19.
HF and MP2 calculations with the 6-31G∗∗ and 6-311G∗∗ basis sets for the titled molecules and those at MP2/cc-pVTZ level for the hypothetical tricyclo[3.2.0.01,3]heptane indicate that the latter molecule should have a carbon atom with highly unusual configuration strongly departing from the tetrahedral one. Both analysis of vibrational frequencies of this molecules and comparison of its energy with those of known isomeric syn- and anti- tricyclo[3.2.0.02,4]heptanes as well as the DFT analysis of its plausible decomposition routes performed at the DFT level indicate that it could be a plausible synthetic target.  相似文献   

20.
In this article, we report our detailed mechanistic study on the reactions of cyclic-N3 with NO, NO2 at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-311+G(d)+ZPVE levels; the reactions of cyclic-N3 with Cl2 was studied at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE levels. Both of the singlet and triplet potential-energy surfaces (PESs) of cyclic-N3 + NO, cyclic-N3 + NO2 and the PES of cyclic-N3 + Cl2 have been depicted. The results indicate that on singlet PESs cyclic-N3 can undergo the barrierless addition–elimination mechanism with NO and NO2 forming the respective dominant products N2 + 1cyclic-NON and 1NNO(O) + N2. Yet the two reactions on triplet PESs are much less likely to take place under room temperature due to the high barriers. For the cyclic-N3 + Cl2 reaction, a Cl-abstraction mechanism was revealed that results in the product cyclic-N3Cl + Cl with an overall barrier as high as 14.7 kcal/mol at CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE level. So the cyclic-N3 radical could be stable against Cl2 at low temperatures in gas phase. The present results can be useful for future experimental investigation on the title reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号