首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production batch samples of paracetamol tablets and specially prepared out-of-specification batches covering the range 90-110% of the stated amount (500 mg) were analysed by the BP official UV assay and by NIR transmittance spectroscopy. NIR measurements were made on 20 intact tablets from each batch, scanned five times each (10 min measurement time per batch) over the spectral range 6000-11,520 cm-1. An average spectrum was calculated for each batch. Partial least squares (PLS) regression models were set up using a calibration set (20 batches) between the NIR response and the reference tablet paracetamol content (UV). Various pre-treatments of the spectra were examined; the smallest relative standard error of prediction (0.73%) was obtained using the first derivative of the absorbance over the full spectrum. Only two principal components were required for the PLS model to give a good relationship between the spectral information and paracetamol content. Applying this model to the validation set (15 batches) gave a mean bias of -0.08% and a mean accuracy of 0.59% with relative standard deviations of 0.75 and 0.44%, respectively. The proposed method is non-destructive and therefore lends itself to on-line/at-line production control purposes. The method is easy to use and does not require a knowledge of the mass of the tablets.  相似文献   

2.
中药材三七提取液近红外光谱的支持向量机回归校正方法   总被引:34,自引:0,他引:34  
提出近红外光谱的支持向量机回归校正建模方法.以中药材三七渗漉提取液为实际分析对象,对其近红外光谱数据进行预处理和主成分分析后,用支持向量机回归算法建立人参皂苷Rg1,Rb1和Rd以及三七总皂苷的近红外光谱校正模型.以Rg1,Rb1和Rd的HPLC测定值及三七总皂苷的比色法测定值为参照,将本文方法与偏最小二乘回归和径向基神经网络建模方法相比较,结果表明,本文所建模型的预测准确性优于后两者,可推广应用于中药提取过程的近红外光谱分析.  相似文献   

3.
In order to clarify the theoretical basis of the variability in the measurement of tablet hardness by compression pressure, NIR spectroscopic methods were used to predict tablet hardness of the formulations. Tablets (200 mg, 8 mm in diameter) consisting of berberine chloride, lactose, and potato starch were formed at various compression pressures (59, 78, 98, 127, 195 MPa). The hardness and the distribution of micropores were measured. The reflectance NIR spectra of various compressed tablets were used as a calibration set to establish a calibration model to predict tablet hardness by principal component regression (PCR) analysis. The distribution of micropores was shifted to a smaller pore size with increasing compression pressure. The total pore volume of tablets decreased as the compression pressure increased. The hardness increased as the compression pressure increased. The hardness could be predicted using a calibration model consisting of 7 principal components (PCs) obtained by PCR. The relationship between the predicted and the actual hardness values exhibited a straight line, an R(2) of 0.925. In order to understand the theoretical analysis (scientific background) of calibration models used to evaluate tablet hardness, the standard error of cross validation (SEV) values, the loading vectors of each PC and the regression vector were investigated. The result obtained with the calibration models for hardness suggested that the regression vector might involve physical and chemical factors. In contrast, the porosity could be predicted using a calibration model composed of 2 PCs. The relationship between the predicted and the actual total pore volume showed a straight line with R(2) = 0.801. The regression vector of the total pore volume might be due to physical factors.  相似文献   

4.
Near-infrared (NIR) spectroscopy, in combination with chemometrics, enable the analysis of raw materials without time-consuming sample preparation methods. The aim of our work was to estimate critical parameters in the analytical specification of oxytetracycline, and consequently the development of a method for quantification and qualification of these parameters by NIR spectroscopy. A Karl Fischer (K.F.) titration to determine the water content, a colorimetric assay method, and Fourier transform-infrared (FT-IR) spectroscopy to identify the oxytetracycline base, were used as reference methods, respectively. Multivariate calibration was performed on NIR spectral data using principal component analysis (PCA), partial least-squares (PLS 1) and principal component regression (PCR) chemometric methods. Multivariate calibration models for NIR spectroscopy have been developed. Using PCA and the Soft Independent Modelling of Class Analogy (SIMCA) approach, we established the cluster model for the determination of sample identity. PLS 1 and PCR regression methods were applied to develop the calibration models for the determination of water content and the assay of the oxytetracycline base. Comparing the PLS and PCR regression methods we found out that the PLS is better established by NIR, especially as the spectroscopic data (NIR spectra) are highly collinear and there are many wavelengths due to non-selective wavelengths. The calibration models for NIR spectroscopy are convenient alternatives to the colorimetric method and to the K.F. method, as well as to FT-IR spectroscopy, in the routine control of incoming material.  相似文献   

5.
Broad NW  Jee RD  Moffat AC  Smith MR 《The Analyst》2001,126(12):2207-2211
Transmission near-infrared (NIR) spectroscopy was used for the rapid and non-destructive determination of the content of a hormone steroid in single intact tablets. Tablets produced for clinical trial purposes containing 5, 10, 15, 20 and 30 mg (2.94, 5.88, 8.82, 11.76 and 17.64% m/m, respectively) were used to develop calibration models without the need to specially prepare any out of specification tablets. Reference values for the individual tablets used in the NIR calibration models and test set were measured by reversed-phase high performance liquid chromatography (HPLC). Partial least squares regression using standard normal variate transformed second-derivative spectra over the range 800 to 1040 nm gave the optimum calibration model with a standard error of calibration of 0.52 mg per tablet. Measurements of an independent test set gave comparable results (standard error of prediction 0.31 mg per tablet). Measurement errors for a single tablet (RSD < 2.5% for a given active level) were sufficiently small to allow the procedure to be applied to pharmacopoeial uniformity of content testing of batches of these tablets and permitted the non-destructive testing of 30 tablets in under 20 min as compared to 6 h by HPLC.  相似文献   

6.
The application of near-infrared (NIR) spectroscopy for in-line monitoring of extraction process of scutellarein from Erigeron breviscapus (vant.) Hand-Mazz was investigated. For NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm pathlength flow cell were utilized to collect spectra in real-time. High performance liquid chromatography (HPLC) was used as a reference method to determine scutellarein in extract solution. Partial least squares regression (PLSR) calibration model of Savitzky-Golay smoothing NIR spectra in the 5450-10,000 cm(-1) region gave satisfactory predictive results for scutellarein. The results showed that the correlation coefficients of calibration and cross validation were 0.9967 and 0.9811, respectively, and the root mean square error of calibration and cross validation were 0.044 and 0.105, respectively. Furthermore, both the moving block standard deviation (MBSD) method and conformity test were used to identify the end point of extraction process, providing real-time data and instant feedback about the extraction course. The results obtained in this study indicated that the NIR spectroscopy technique provides an efficient and environmentally friendly approach for fast determination of scutellarein and end point control of extraction process.  相似文献   

7.
Chalus P  Roggo Y  Walter S  Ulmschneider M 《Talanta》2005,66(5):1294-1302
Near-infrared (NIR) spectroscopy can be applied to determine the active substance content of tablets. Its great advantage lies in the minimal sample preparation required, which helps to reduce the potential for error. The aim of this study is to show the feasibility of this method on low-dosage tablets. The influence of various spectral pretreatments [standard normal variate (SNV), multiplicative scatter correction (MSC), second derivative (D2), orthogonal signal correction (OSC), separately and combined] and regression methods on prediction error are compared. Partial least square (PLS) regression provided better prediction than principal component regression (PCR). SNV was applied to the first data set and SNV and a second derivative to the second set to maximise model accuracy for quantifying the active substance of intact pharmaceutical products using diffuse reflectance NIR. The models yielded standard errors of prediction (SEP) of 0.1768 and 0.0682 mg for the two products. The experiments were conducted with two low-dosage pharmaceutical forms and results of NIR predictions were comparable to currently approved methods. Diffuse reflectance NIR has the potential to become a reliable and robust quality control method for determining active tablet content.  相似文献   

8.
A principal component regression (PCR) model is built for prediction of total antioxidant capacity in green tea using near-infrared (NIR) spectroscopy. The modelling procedures are systematically studied with the focus on outlier detection. Different outlier detection methods are used and compared. The root mean square error of prediction (RMSEP) of the final model is comparable to the precision of the reference method.  相似文献   

9.
Blanco M  Cueva-Mestanza R  Peguero A 《Talanta》2011,85(4):2218-2225
Using an appropriate set of samples to construct the calibration set is crucial with a view to ensuring accurate multivariate calibration of NIR spectroscopic data. In this work, we developed and optimized a new methodology for incorporating physical variability in pharmaceutical production based on the NIR spectrum for the process. Such a spectrum contains the spectral changes caused by each treatment applied to the component mixture during the production process. The proposed methodology involves adding a set of process spectra (viz. difference spectra between those for production tablets and a laboratory mixture of identical nominal composition) to the set of laboratory samples, which span the wanted concentration range, in order to construct a calibration set incorporating all physical changes undergone by the samples in each step of the production process. The best calibration model among those tested was selected by establishing the influence of spectral pretreatments used to obtain the process spectrum and construct the calibration models, and also by determining the multiplying factor m to be applied to the process spectra in order to ensure incorporation of all variability sources into the calibration model. The specific samples to be included in the calibration set were selected by principal component analysis (PCA). To this end, the new methodology for constructing calibration sets for determining the Active Principle Ingredients (API) and excipients was applied to Irbesartan tablets and validated by application to the API and excipients of paracetamol tablets. The proposed methodology provides simple, robust calibration models for determining the different components of a pharmaceutical formulation.  相似文献   

10.
提出了用近红外光谱测定端羟基环氧乙烷-四氢呋喃共聚醚(PET)的羟值,结合主成分回归和偏最小二乘法建立了PET羟值与其近红外光谱之间的关联模型。结果表明,近红外光谱法与化学分析法的测定结果一致;近红外光谱法测定PET羟值的相对误差在5%以内;利用遗传算法选择部分波长建立校正可以降低模型的预测误差。  相似文献   

11.
主成分分析-支持向量回归建模方法及应用研究   总被引:14,自引:5,他引:14  
将主成分分析(PCA)用于近红外光谱的特征提取,并与支持向量回归(SVR)相结合,实现了主成分分析-支持向量回归(PCA-SVR)用于近红外光谱定量分析的建模方法。与单纯的SVR方法相比,不仅提高了运算速度,而且提高了模型的预测准确度。将PCA-SVR方法用于烟草样品中总糖和总挥发碱含量的测定,所得结果的预测均方根误差分别为1.323和0.0477;回收率分别为91.8%~112.6%和88.9%~120.2%。  相似文献   

12.
Owing to spectral variations from other sources than the component of interest, large investments in the NIR model development may be required to obtain satisfactory and robust prediction performance. To make the NIR model development for routine active pharmaceutical ingredient (API) prediction in tablets more cost-effective, alternative modelling strategies were proposed. They used a massive amount of prior spectral information on intra- and inter-batch variation and the pure component spectra to define a clutter, i.e., the detrimental spectral information. This was subsequently used for artificial data augmentation and/or orthogonal projections. The model performance improved statistically significantly, with a 34–40% reduction in RMSEP while needing fewer model latent variables, by applying the following procedure before PLS regression: (1) augmentation of the calibration spectra with the spectral shapes from the clutter, and (2) net analyte pre-processing (NAP). The improved prediction performance was not compromised when reducing the variability in the calibration set, making exhaustive calibration unnecessary. Strong water content variations in the tablets caused frequency shifts of the API absorption signals that could not be included in the clutter. Updating the model for this kind of variation demonstrated that the completeness of the clutter is critical for the performance of these models and that the model will only be more robust for spectral variation that is not co-linear with the one from the property of interest.  相似文献   

13.
Trafford AD  Jee RD  Moffat AC  Graham P 《The Analyst》1999,124(2):163-167
Near-infrared (NIR) reflectance spectroscopy was used to determine rapidly and non-destructively the content of paracetamol in bulk batches of intact Sterwin 500 mg tablets by collecting NIR spectra in the range 1100-2500 nm and using a multiple linear regression calibration method. The developed NIR method gave results comparable to the British Pharmacopoeia 1993 UV assay procedure, the standard errors of calibration and prediction being 0.48% and 0.71% m/m, respectively. The method showed good repeatability, the standard deviation and coefficient of variation for six NIR assays on the same batch on the same day being 0.14 and 0.16% m/m, respectively, while measurements over six consecutive days gave 0.31 and 0.36% m/m, respectively. Applying the calibration to a parallel test set gave a mean bias of -0.22% and a mean accuracy of 0.45%. The developed method illustrates how the full potential of NIR can be utilised and how the ICH guidelines which recommend the validation of linearity, range, accuracy and precision for pharmaceutical registration purposes can be applied. Duplicate determinations on bulk batches could be performed in under 2 min, allowing the potential use of the method on-line for real time monitoring of a running production process.  相似文献   

14.
An ensemble, a model-independent technique based on combining several models for classification/regression tasks, allows us to achieve a high accuracy that is often not achievable with single models. Such combinations have gained increasing attention in many fields. This paper proposes the use of random subspace (RS)-based regression ensemble as an alternative method for near-infrared (NIR) spectroscopic calibration of tobacco samples. Because of the considerable reduction of variables in a random subspace, multiple linear regression (MLR) is used as the base algorithm and the method is therefore also referred to as RS-MLR. The overall performance of the proposed RS-MLR method is compared to those of partial least square regression (PLSR), kernel principal component regression (KPCR) and kernel partial least square regression (KPLSR). The results reveal that the RS-MLR method not only has a simple concept but also can produce a more parsimonious and more accurate calibration model than PLSR, KPCR and KPLSR, at a lower computational cost. Besides, we also found that the RS-MLR method is very appropriate for the so-called small sample problems and that the calibration models built by RS-MLR are less sensitive to overfitting.  相似文献   

15.
A new regression method based on independent component analysis   总被引:1,自引:0,他引:1  
Shao X  Wang W  Hou Z  Cai W 《Talanta》2006,69(3):676-680
Based on independent component analysis (ICA), a new regression method, independent component regression (ICR), was developed to build the model of NIR spectra and the routine components of plant samples. It is found that ICR and principal component regression (PCR) are completely equivalent when they are applied in quantitative prediction. However, independent components (ICs) can give more chemical explanation than principal components (PCs) because independence is a high-order statistic that is a much stronger condition than orthogonality. Three ICs are obtained by ICA from the NIR spectra of plant samples; it is found that they are strongly correlated to the NIR spectra of water, hydrocarbons and organonitrogen compounds, respectively. Therefore, ICA may be a promising tool to retrieve both quantitative and qualitative information from complex chemical data sets.  相似文献   

16.
This work describes a general framework for assessing the active pharmaceutical ingredient (API) and excipient concentrations simultaneously in pharmaceutical dosage forms based on laboratory-scale measurements. The work explores the comprehensive development of a near infrared (NIR) analytical protocol for the quantification of the API and excipients of a pharmaceutical formulation. The samples were based on a paracetamol (API) formulation with three excipients: microcrystalline cellulose, talc, and magnesium stearate. The developed method was based on laboratory-scale samples as calibration samples and pilot-scale samples (powders and tablets) as model test samples. Both types of samples were produced according to an experimental design. The samples were measured in reflectance mode in a Fourier-transform NIR spectrometer. Additionally, a new method for determining the minimum number of calibration samples was proposed. It was concluded that the use of laboratory-scale samples to construct the calibration set is an effective way to ensure the concentration variability in the development of calibration models for industrial applications. With this method, both API and excipients can be determined in high-throughput applications in the pharmaceutical industry.  相似文献   

17.
《Vibrational Spectroscopy》2003,31(1):125-131
Near-infrared (NIR) spectroscopy has been utilized to demonstrate its feasibility for the measurement of major components in the acetic acid process. In order to simulate the acetic acid process, synthetic mixtures were prepared from five different components: acetic acid, methyl acetate, methyl iodide, water, and potassium iodide. Partial least squares (PLS) regression was utilized to differentiate the spectral characteristics as well as to quantify each component for the mixtures. The spectral features of acetic acid, methyl acetate, methyl iodide, and water are noticeably different with each other over the entire NIR region. The quantity of iodide ion, which does not absorb NIR radiation, was determined using the wavelength shift and intensity change of water absorption band caused by the change of iodide ion concentration. The PLS calibration results of the five components show good correlation with reference data. They also demonstrate the technical feasibility of NIR spectroscopy for monitoring important components in the acetic acid process.  相似文献   

18.
Visible (Vis) and near-infrared reflectance (NIR) spectroscopy combined with chemometrics was explored as a tool to trace muscles from autochthonous and crossbreed pigs from Uruguay. Muscles were sourced from two breeds, namely, the Pampa-Rocha (PR) and the Pampa-Rocha x Duroc (PRxD) crossbreed. Minced muscles were scanned in the Vis and NIR regions (400–2,500 nm) in a monochromator instrument in reflectance. Principal component analysis (PCA), discriminant partial least square regression (DPLS), linear discriminant analysis (LDA) based on PCA scores and soft independent modelling of class analogy (SIMCA) were used to identify the origin of the muscles based on Vis and NIR data. Full cross validation was used as validation method when classification models were developed. DPLS correctly classified 87% of PR and 78% of PRxD muscle samples. LDA calibration models correctly classified 87 and 67% of muscles as PR and PRxD, respectively. SIMCA correctly classified 100% of PR muscles. The results demonstrated the usefulness of Vis and NIR spectra combined with chemometrics as rapid method for authentication and identification of muscles according to the breed of pig.  相似文献   

19.
采用近红外光谱(NIRS)透射法对红花罐组式逆流提取过程中羟基红花黄色素A(Hydroxysafflor yellow A,HSYA)的含量进行快速无损的测定.在红花逆流提取过程中,以高效液相色谱法(HPLC)为对照分析方法,测定提取液中羟基红花黄色素A的含量,运用偏最小二乘(PLS)法建立NIR光谱与羟基红花黄色素A的HPLC分析值之间多元校正模型,并对逆流提取过程的未知样本进行含量预测.校正模型相关系数达到0.982,预测相关系数达到0.965,RMSEC和RMSEP分别为0.053和0.075,RSEC和RSEP分别为3.96%和5.25%.结果表明,NIRS可以作为一种准确、快速、无损的检测方法用于检测中药逆流提取过程有效成分含量变化规律.  相似文献   

20.
A novel near infrared (NIR) modeling method—Laplacian regularized least squares regression (LapRLSR) was presented, which can take the advantage of many unlabeled spectra to promote the prediction performance of the model even if there are only few calibration samples. Using LapRLSR modeling, NIR spectral analysis was applied to the online monitoring of the concentration of salvia acid B in the column separation of Salvianolate. The results demonstrated that LapRLSR outperformed partial least squares (PLS) significantly, and NIR online analysis was applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号