首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
甲醇制烃(MTH)反应作为一条非石油可持续路线制备重要的平台化学品,得到学术界和工业界的广泛关注.根据主要产物的不同, MTH反应又分为甲醇制烯烃(MTO)、甲醇制汽油(MTG)和甲醇制芳烃(MTA).MTO反应已经实现了商业化应用,但其催化效率,即烯烃选择性和催化剂寿命仍有待提高.为开发高效的MTH催化剂,其机理研究得到了研究者的广泛关注.MTH反应稳态阶段的间接机理(即“烃池”机理)已达成基本共识,但反应诱导期的第一个C-C键的形成及转化过程一直是该领域具挑战性和争议性的课题.原位谱学技术的发展为探究MTH反应第一个C-C键的形成机理研究带来了机遇,目前,已有多条关于C-C键形成及转化路径的报道.然而,有关MTO反应机理,尤其是第一个C-C键形成及转化为“烃池”物种过程的报道和文献总结尚不充分.此外,有关机理研究用于指导高效MTO催化剂设计的文献综述较少.基于该反应重要的基础及应用研究背景,对其进行全面分析总结具有十分重要的意义.本文首先归纳总结了MTH反应的机理研究进展,包括第一个C-C键形成的直接机理、间接机理、“双循环”机理(提出及演变过程)以及由直接机理逐步转化为间接机理的...  相似文献   

2.
甲醇制烯烃(MTO)是典型的自催化过程,包含诱导期反应.在诱导期反应中,甲醇转化生成的烃池物种在分子筛催化剂上积累,形成含有活性中心的烃池,从而进一步促进和加快更多烃池物种的生成.作为MTO反应的活性中间体,研究分子筛上烃池物种及其演变,对于理解MTO反应机理以及C1化学中第一个C-C键的生成具有重要意义.本文采用SAPO-34分子筛催化剂,对较低温度下流化床反应器中MTO诱导期反应进行研究,获得了诱导期反应的数据.通过HF溶解分子筛骨架的方法,检测各阶段存留在SAPO-34分子筛催化剂中的有机物种,分析了分子筛催化剂上烃池物种的积累和演变、烃池的形成以及烃池物种与催化剂失活之间的关系,并结合诱导期反应数据进一步讨论了MTO诱导期反应的动力学.研究发现,与ZSM-5分子筛类似,SAPO-34分子筛上的MTO诱导期反应对温度非常敏感.诱导期证实可分为三个反应阶段:初始反应阶段(最初C-C键生成阶段)、第二阶段(烃池物种的生成和积累阶段)及第三阶段(自催化反应阶段).这表明SAPO-34分子筛上MTO反应中烃池机理的重要性.然而,由于烃池物种和烃池机理的复杂性,在缺乏动力学研究的情况下,很难将诱导期反应三个阶段与反应机理进行明确的关联.因此,我们分别讨论了诱导期反应三个阶段的动力学,并计算了各阶段的表观活化能.动力学研究表明,与ZSM-5不同的是,在SAPO-34上的MTO诱导期反应中,初始反应阶段表观活化能较低,反应进行相对容易;而自催化反应阶段的活化能较高,反应进行相对困难.这主要是SAPO-34与ZSM-5分子筛的结构差异所致.SAPO-34分子筛因具有CHA结构而导致的扩散限制和空间约束,使得在第一阶段初始活性物种的生成和积累相对容易;但是在自催化反应阶段,不具活性的金刚烷类物质开始生成,并随着反应的进行在所有积碳物种所占的比例逐渐升高,导致其在自催化反应阶段(第三阶段)的活化能高于烃池物种的生成和积累阶段(第二阶段).对于HZSM-5催化剂上的MTO诱导期反应,由于MFI结构所产生的扩散限制和空间约束低于CHA结构,在第一阶段初始活性物种的积累相对困难,导致其初始阶段的表观活化能高于SAPO-34催化剂;但是随着反应的进行,活性物种在HZSM-5催化剂上不断积累,导致自催化反应阶段的进行相对比较容易.然而,对于SAPO-34分子筛上MTO诱导期反应,随着反应时间的推移,催化剂上积累的活性物种和非活性物种同时增多,而且由于SAPO-34结构特点而引起的扩散限制,大部分物种均保留在SAPO-34分子筛的笼中.分子筛中活性物种能提高反应活性,相应地,非活性物种则会抑制反应活性.因此,SAPO-34分子筛上甲醇转化诱导期反应活化能反映的是活性物种和非活性物种之间的竞争关系.  相似文献   

3.
甲醇制烯烃(MTO)是典型的自催化过程,包含诱导期反应.在诱导期反应中,甲醇转化生成的烃池物种在分子筛催化剂上积累,形成含有活性中心的烃池,从而进一步促进和加快更多烃池物种的生成.作为MTO反应的活性中间体,研究分子筛上烃池物种及其演变,对于理解MTO反应机理以及C1化学中第一个C–C键的生成具有重要意义.本文采用SAPO-34分子筛催化剂,对较低温度下流化床反应器中MTO诱导期反应进行研究,获得了诱导期反应的数据.通过HF溶解分子筛骨架的方法,检测各阶段存留在SAPO-34分子筛催化剂中的有机物种,分析了分子筛催化剂上烃池物种的积累和演变、烃池的形成以及烃池物种与催化剂失活之间的关系,并结合诱导期反应数据进一步讨论了MTO诱导期反应的动力学.研究发现,与ZSM-5分子筛类似,SAPO-34分子筛上的MTO诱导期反应对温度非常敏感.诱导期证实可分为三个反应阶段:初始反应阶段(最初C–C键生成阶段)、第二阶段(烃池物种的生成和积累阶段)及第三阶段(自催化反应阶段).这表明SAPO-34分子筛上MTO反应中烃池机理的重要性.然而,由于烃池物种和烃池机理的复杂性,在缺乏动力学研究的情况下,很难将诱导期反应三个阶段与反应机理进行明确的关联.因此,我们分别讨论了诱导期反应三个阶段的动力学,并计算了各阶段的表观活化能.动力学研究表明,与ZSM-5不同的是,在SAPO-34上的MTO诱导期反应中,初始反应阶段表观活化能较低,反应进行相对容易;而自催化反应阶段的活化能较高,反应进行相对困难.这主要是SAPO-34与ZSM-5分子筛的结构差异所致.SAPO-34分子筛因具有CHA结构而导致的扩散限制和空间约束,使得在第一阶段初始活性物种的生成和积累相对容易;但是在自催化反应阶段,不具活性的金刚烷类物质开始生成,并随着反应的进行在所有积碳物种所占的比例逐渐升高,导致其在自催化反应阶段(第三阶段)的活化能高于烃池物种的生成和积累阶段(第二阶段).对于HZSM-5催化剂上的MTO诱导期反应,由于MFI结构所产生的扩散限制和空间约束低于CHA结构,在第一阶段初始活性物种的积累相对困难,导致其初始阶段的表观活化能高于SAPO-34催化剂;但是随着反应的进行,活性物种在HZSM-5催化剂上不断积累,导致自催化反应阶段的进行相对比较容易.然而,对于SAPO-34分子筛上MTO诱导期反应,随着反应时间的推移,催化剂上积累的活性物种和非活性物种同时增多,而且由于SAPO-34结构特点而引起的扩散限制,大部分物种均保留在SAPO-34分子筛的笼中.分子筛中活性物种能提高反应活性,相应地,非活性物种则会抑制反应活性.因此,SAPO-34分子筛上甲醇转化诱导期反应活化能反映的是活性物种和非活性物种之间的竞争关系.  相似文献   

4.
Ni/Al2O3-SiO2催化剂对轻质C5馏分加氢的催化性   总被引:5,自引:0,他引:5  
 利用X射线衍射、热重-差热分析和孔结构分析对新鲜和失活的Ni/Al2O3-SiO2催化剂进行了表征,讨论了催化剂的失活机理,并考察了催化剂在轻质C5馏分加氢反应中的稳定性和加氢工艺条件. 结果表明,催化剂失活的主要原因是加氢原料中的硫化物与催化剂活性组分镍发生反应生成了Ni3S2、镍晶粒长大和催化剂结焦. 使用氧化锌脱硫剂将加氢原料脱硫后,在单个反应器内,用饱和烷烃稀释C5馏分至其中二烯烃的质量分数为6%~9%,在加氢压力为1.3~2.5 MPa,体积空速为5.0~6.0 h-1,H2/油体积比为80~120的条件下,原料中二烯烃和炔烃转化率为100%,单烯烃转化率在97%以上. 催化剂连续运行375 h后,其催化活性与新鲜催化剂基本相同.  相似文献   

5.
从煤、生物质或天然气出发经甲醇制烯烃正在成为最重要的非石油路线低碳烯烃和液态燃料的生产途径.基于SAPO-34和HZSM-5催化剂,甲醇制低碳烯烃(MTO),甲醇制丙烯(MTP)和甲醇制汽油(MTG)已经实现了工业化.与此同时,甲醇制烯烃反应机理也一直是学术界和工业界研究的焦点,然而由于甲醇转化机理十分复杂,且往往受多种因素的影响,使得机理研究工作至今未给出明确详尽的结论.据文献报道,在具有较大笼或交叉孔道结构的SAPO-34,SSZ-13和Hβ催化剂上,甲醇转化主要是通过烃池机理进行.烃池物种包括多甲苯及其对应的质子化产物.随着HZSM-5上甲醇转化双循环机理的提出,近期人们开始关注一维孔道分子筛上的甲醇转化反应,试图通过抑制芳烃循环使得甲醇转化主要通过烯烃甲基化裂解机理进行,发现在具有一维十元环孔道结构的HZSM-22分子筛上甲醇转化能够达到这一效果,产物主要以C3+烯烃为主,乙烯的生成较少.该催化体系的发现对于甲醇制丙烯过程的开发具有重要的意义,然而除了分子筛的拓扑结构,催化剂的酸强度对甲醇转化也具有重要的影响,值得深入研究.为此,本文采用同位素切换/共进料实验,色质谱(GC-MS),热分析(TGA)以及原位红外实验(in situ FTIR)等技术系统研究两种一维十元环结构分子筛HZSM-22和SAPO-11酸强度对于甲醇转化和催化剂失活机理的影响,为开发新型催化剂和优化反应条件以调节产物选择性提供理论指导.12C/13C-甲醇切换实验表明,HZSM-22和SAPO-11催化的甲醇转化机理主要是烯烃循环,然而由于酸强度的差异导致两种分子筛上甲基化反应和裂解反应对烯烃最终产物分布贡献不同.对于HZSM-22分子筛,催化活性较高,当反应温度低于400o C时,产物以C5+高碳烃为主,随着反应温度的升高,产物以C2–C4低碳烃为主,且乙烯的增长速率高于丙烯;对于SAPO-11分子筛,催化活性较低,无论反应温度高或低,甲醇转化产物均以C5+高碳烃为主.以上结果表明,催化剂的活性与酸强度相关,且随着反应温度的升高,在酸性较强的HZSM-22分子筛上高碳烃的裂解活性要远高于酸性较弱的SAPO-11分子筛.该推论得到13C-甲醇和12C-1-丁烯共进料实验数据的支持.失活催化剂的GC-MS和TG结果显示,催化剂的失活与酸强度和反应温度密切相关:对于HZSM-22分子筛,较低温度下(450o C)催化剂的失活源于稠环化合物的生成和积累,高温下(450o C)的失活是源于分子筛表面石墨碳的沉积;对于SAPO-11分子筛,低温下(400o C)的失活源于稠环芳烃的生成和积累,高温下(400o C)的失活是源于分子筛表面石墨碳的沉积.此外,由于酸强度的差异,与SAPO-11相比,低温下积碳物种更倾向于在HZSM-22分子筛孔口快速形成.这也是HZSM-22分子筛在低温下快速失活的原因.为了进一步证明该结论,本文采用原位红外装置对HZSM-22催化甲醇转化过程中的Brnsted酸和芳烃物种进行了连续监测.结果显示,在最初的15 min内归属为Brnsted酸的峰(3585 cm–1)有明显的下降,但随着反应时间的延长,Brnsted酸的量不再发生变化;与此同时,归属为芳烃物种的峰(3136 cm–1)增加到一定程度后随着反应时间的延长也几乎不再增加.这进一步说明了低温下HZSM-22分子筛的失活是由非活性芳烃积碳物种堵塞孔口造成的.  相似文献   

6.
代小平  余长春  李然家 《催化学报》2007,28(12):1047-1052
在固定床反应器上考察了原粒度(1~3mm)CeO2助Co/SiO2催化剂的费托反应性能,提出了催化剂失活的机理,并采用程序升温还原、X射线衍射和X射线光电子能谱对催化剂进行了表征.结果表明,在1.5MPa,488K和400h-1条件下进行的300h稳定性实验中,原粒度CeO2助Co/SiO2催化剂上的CO平均转化率达到41%,液态烃选择性达到85%,液态烃中C10 烃的质量含量占88%以上.反应器出口的催化剂中有少量的CoO和Co2SiO4生成.催化剂的失活过程受动力学控制而非热力学控制,催化剂的失活机理为:高分散的纳米Co离子在反应器出口高水蒸气压力的作用下,以CoO为中间物种,与水合SiO2作用生成Co2SiO4,即Co H2O→CoO H2,SiO2 H2O→OSi(OH)2,2CoO OSi(OH)2→Co2SiO4 H2O.  相似文献   

7.
 催化裂化(FCC)汽油中的硫化物多以噻吩类硫化物的形式存在,而且相对集中在沸程较高的馏分中. 通过固体酸催化剂催化噻吩类硫化物与烯烃的烷基化反应生成多烷基噻吩,可较大程度地提高其沸点,再经精馏将硫化物转移至FCC汽油的重馏分中,从而达到脱硫目的. 考察了AlCl3-CT175树脂催化剂催化模型硫化物如噻吩、2-甲基噻吩及2-乙基噻吩与异丁烯的烷基化反应性能,采用GC-FPD和GC-MS技术研究了AlCl3-CT175树脂催化剂的失活机理. 结果表明,原料中的二烯烃杂质在固体酸催化剂作用下发生聚合反应结焦,覆盖在催化剂表面,堵塞孔道,从而导致催化剂失活.  相似文献   

8.
C4/C5烃催化裂解制低碳烯烃的研究进展   总被引:1,自引:0,他引:1  
从催化剂类型、裂解工艺、催化裂解的影响因素和裂解机理4个方面对国内外C4/C5烃催化裂解制低碳烯烃的研究进行了综述。催化裂解制低碳烯烃催化剂主要采用ZSM-5分子筛系列催化剂,在此基础上发展了酸改性或水热改性高硅ZSM系列分子筛及介孔MCM41分子筛。总结了国内外C4/C5烃的裂解工艺,认为影响催化裂解的主要因素是裂解原料、催化剂类型及工艺条件。目前,裂解机理主要是自由基与碳正离子机理相结合的机理。并简述了本课题组目前有关C4烷烃催化裂解的主要研究进展。  相似文献   

9.
C4/C5烃催化裂解制低碳烯烃的研究进展   总被引:2,自引:0,他引:2  
从催化剂类型、裂解工艺、催化裂解的影响因素和裂解机理4个方面对国内外C4/C5烃催化裂解制低碳烯烃的研究进行了综述。催化裂解制低碳烯烃催化剂主要采用ZSM-5分子筛系列催化剂,在此基础上发展了酸改性或水热改性高硅ZSM系列分子筛及介孔MCM-41分子筛。总结了国内外C4/C5烃的裂解工艺,认为影响催化裂解的主要因素是裂解原料、催化剂类型及工艺条件。目前,裂解机理主要是自由基与碳正离子机理相结合的机理。并简述了本课题组目前有关C4烷烃催化裂解的主要研究进展。  相似文献   

10.
介绍了由 CO2 H2 合成 C2 烃的几种复合催化剂体系的研究进展 ,比较和评价了复合催化剂体系的活性和选择性及其对 C2 烃类生成的影响。着重于复合催化剂体系对 C4 烃的生成及产物分布的影响并简述反应机理  相似文献   

11.
After a prolonged effort over many years, the route for the formation of a direct carbon?carbon (C?C) bond during the methanol‐to‐hydrocarbon (MTH) process has very recently been unveiled. However, the relevance of the “direct mechanism”‐derived molecules (that is, methyl acetate) during MTH, and subsequent transformation routes to the conventional hydrocarbon pool (HCP) species, are yet to be established. This important piece of the MTH chemistry puzzle is not only essential from a fundamental perspective, but is also important to maximize catalytic performance. The MTH process was probed over a commercially relevant H‐SAPO‐34 catalyst, using a combination of advanced solid‐state NMR spectroscopy and operando UV/Vis diffuse reflectance spectroscopy coupled to an on‐line mass spectrometer. Spectroscopic evidence is provided for the formation of (olefinic and aromatic) HCP species, which are indeed derived exclusively from the direct C?C bond‐containing acetyl group of methyl acetate. New mechanistic insights have been obtained from the MTH process, including the identification of hydrocarbon‐based co‐catalytic organic reaction centers.  相似文献   

12.
The understanding of catalyst deactivation represents one of the major challenges for the methanol‐to‐hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π‐interactions in catalyst deactivation in the MTH reaction on zeolites H‐SSZ‐13 and H‐ZSM‐5. π‐interaction‐induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two‐dimensional solid‐state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   

13.
Although industrialized, the mechanism for catalytic upgrading of bioethanol over solid‐acid catalysts (that is, the ethanol‐to‐hydrocarbons (ETH) reaction) has not yet been fully resolved. Moreover, mechanistic understanding of the ETH reaction relies heavily on its well‐known “sister‐reaction” the methanol‐to‐hydrocarbons (MTH) process. However, the MTH process possesses a C1‐entity reactant and cannot, therefore, shed any light on the homologation reaction sequence. The reaction and deactivation mechanism of the zeolite H‐ZSM‐5‐catalyzed ETH process was elucidated using a combination of complementary solid‐state NMR and operando UV/Vis diffuse reflectance spectroscopy, coupled with on‐line mass spectrometry. This approach establishes the existence of a homologation reaction sequence through analysis of the pattern of the identified reactive and deactivated species. Furthermore, and in contrast to the MTH process, the deficiency of any olefinic‐hydrocarbon pool species (that is, the olefin cycle) during the ETH process is also noted.  相似文献   

14.
The understanding of catalyst deactivation represents one of the major challenges for the methanol-to-hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π-interactions in catalyst deactivation in the MTH reaction on zeolites H-SSZ-13 and H-ZSM-5. π-interaction-induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two-dimensional solid-state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   

15.
The catalytic, deactivation, and regeneration characteristics of large coffin‐shaped H‐ZSM‐5 crystals were investigated during the methanol‐to‐hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas‐phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin‐shaped zeolite H‐ZSM‐5 crystals in a fixed‐bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization‐dependent UV‐visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time‐of‐flight secondary‐ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed‐bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2/inert gas mixtures at 550 °C. UV‐visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H‐ZSM‐5 deactivated more rapidly at higher reaction temperature.  相似文献   

16.
Liquid hydrocarbon fuels play an essential part in the global energy chain, owing to their high energy density and easy transportability. Olefins play a similar role in the production of consumer goods. In a post-oil society, fuel and olefin production will rely on alternative carbon sources, such as biomass, coal, natural gas, and CO(2). The methanol-to-hydrocarbons (MTH) process is a key step in such routes, and can be tuned into production of gasoline-rich (methanol to gasoline; MTG) or olefin-rich (methanol to olefins; MTO) product mixtures by proper choice of catalyst and reaction conditions. This Review presents several commercial MTH projects that have recently been realized, and also fundamental research into the synthesis of microporous materials for the targeted variation of selectivity and lifetime of the catalysts.  相似文献   

17.
在流化床反应条件下进行了SAPO-34催化的甲醇转化的程序升温反应,并分析了不同反应温度阶段的积碳产物.结合对反应流出物的检测结果和热分析及色质联用分析确定的积碳物种变化,解释了程序升温反应过程中甲醇转化特殊的变化趋势.在程序升温甲醇转化的积碳产物中,除芳烃外,还有一种饱和的多环烷烃积碳物种,它的生成影响了烃池活性中心的形成并引起甲醇转化在低温反应阶段的失活.甲基取代苯和甲基取代金刚烷是低温条件下SAPO-34催化的甲醇转化产生的主要积碳产物,它们在升温过程中会向甲基取代萘以及稠环芳烃转变.积碳物种的演变对应了甲醇转化在起始反应阶段(300~325oC)的反应活性升高和此后(325~350oC)的失活以及在更高温度阶段(350~400oC)活性的恢复.在反应性能评价和积碳分析基础上,首次提出了一种与金刚烷类积碳物种生成相关的低温甲醇转化的失活机理.  相似文献   

18.
钯催化气相氧化羰基化合成碳酸二甲酯   总被引:5,自引:0,他引:5  
通过催化剂反应性能和反应前后XPS谱图对比,分析了负载型钯催化剂在甲醇气相氧化羰基化合成碳酸二甲酯过程中的失活原因,研究了HCl在维持催化剂活性及失活催化剂再生中的作用.结果表明,氯离子的流失是负载型钯碳催化剂失活的主要原因.由于氯离子的流失,对于PdCl2/AC催化剂,钯很容易从二价变为零价:对于PdCl2-CuCl2/AC催化剂,CuCl2发生变化,失去使钯保持二价氯化物状态的功能.在反应过程中补充HCl可以延长催化剂的寿命,也可以利用HCl对失活催化剂进行再生,但采用HCl不能从根本上解决催化剂失活的问题.  相似文献   

19.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol-to-hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface-activated DME, by in situ solid-state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

20.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol‐to‐hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface‐activated DME, by in situ solid‐state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号