首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在水热条件下,5-(4-吡啶基)四氮唑(4-PTZ)分别与氯化锌和氯化镉反应,得到2个基于此配体的配位聚合物,它们的分子式分别为{[Zn(4-PTZ)2Cl2]·4H2O}n(1)和{[Cd3(4-PTZ)2(H2O)2Cl6]·3H2O}n(2),且表现出不同的配位模式.这2个化合物均结晶在单斜晶系,化合物1的晶胞参数分别为:a=0.69175(8)nm;b=2.6688(3)nm;c=1.12266(12)nm;β=93.5350(10)°;V=2.0687(4)nm3;Z=4;R1=0.0318(I>2σ(I));wR2=0.0829;空间群为P21/n.化合物2的晶胞参数分别为:a=1.89713(13)nm;b=1.05579(7)nm;c=1.44649(10)nm;β=102.4890(10)°;V=2.8287(3)nm3;Z=4;R1=0.0262(I>2σ(I));wR2=0.1343;空间群为C2/c.通过元素分析、红外光谱分析和热重分析对该化合物进行了表征,另外荧光测定结果显示化合物12的固态粉末在室温下均表现出较强的紫外荧光发射特性.  相似文献   

2.
以刚性配体1,3-bib(1,3-二(1H-咪唑-1-基)苯)与[Ru(η6-p-bip)Cl2]2p-bip,联苯基团)为原料,合成了3种双核芳基钌配合物[Ru2η6-p-bip)2(1,3-bib)2XY]X2(X=Y=Cl-1),X=Y=Br-2),X=I-和Y=Cl-3),并用核磁和质谱等对配合物进行了表征。配合物1的单晶衍射结果表明其具有一种刚性双核M2L2碗状结构,空腔中心有一个阴离子Cl-。配合物3对A549细胞有较高的抗癌活性(IC50=13.9 μmol·L-1),与顺铂细胞毒性(IC50=15.2 μmol·L-1)相当。紫外吸收光谱、圆二色谱、凝胶电泳法研究表明配合物1~3与DNA发生强烈的相互作用并且诱发DNA发生解旋。  相似文献   

3.
通过溶剂热法合成了2种新型金属配位化合物[Co3(L1)2Cl6]n(1)和{[Cu (L1)(SO4)]·2CH3OH}n(2),其中L1=2,2′,2″-三(1-苯并咪唑基)乙基胺,是一种中性苯并咪唑三足有机配体。单晶X射线衍射分析表明化合物1是一维链状结构、化合物2是三维结构;红外光谱和粉末X射线衍射表征证实化合物12的纯度较高。热重分析表明化合物12是耐热性的材料。碘吸附实验表明,2个化合物对环己烷溶液中的碘和气态碘都有很高的捕获性能且具有良好的循环利用性。同时,它们的吸附动力学最符合准二级模型,吸附过程以化学吸附为主。吸附机理研究进一步表明化合物的结构中含有苯、氮杂环等活性基团,间接增加了与碘的吸附位点,提高了与碘的化学反应性和碘的去除率。  相似文献   

4.
通过热处理手段考察了BiOBr纳米片的表面相变过程。通过XRD,Raman,SEM,TEM,UV-Vis-DRS等手段对不同热处理温度下样品的结构进行表征。结果表明,高温热处理下(≥400℃),BiOBr相向Bi24O31Br10相转变,可形成BiOBr/Bi24O31Br10异质结。通过气相乙醛的降解,并与商用P25TiO2做比较来评估催化剂的光催化性能,测得活性顺序为:P25TiO2>BiOBr>BiOBr/Bi24O31Br10。能带结构分析可知BiOBr与Bi24O31Br10间形成I型异质结不利于电荷分离,因而活性降低。然而,当同样条件下于上述催化剂表面负载Pt后,测得光催化活性顺序为:(BiOBr/Bi24O31Br10)-Pt> BiOBr-Pt >P25 TiO2-Pt。(BiOBr/Bi24O31Br10)-Pt的最高活性归因于BiOBr/Bi24O31Br10异质结与Pt负载的协同分离光生载流子过程,即与BiOBr/Bi24O31Br10界面的光生空穴转移,BiOBr/Pt及Bi24O31Br10/Pt界面的光生电子转移、累积及开启双电子还原O2的一系列过程有关。  相似文献   

5.
A metal-organic coordination polymer [Zn(Pht)(Medpq)]n (Pht=phthalic acid, Medpq=2-methyldipyrido[3,2-f:2′,3′-h]quinoxaline) (1) has been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectrum, TG and X-ray single-crystal structure analysis. Title complex crystallizes in the monoclinic system, space group Cc, with a=1.027 4(4) nm, b=2.955 7(11) nm, c=0.685 2(3) nm, β=112.941°, V=1.916 3(13) nm3, C23H14N4O4Zn, Mr=475.75, Dc=1.649 g·cm-3, μ(Mo Kα)=1.324 mm-1, F(000)=968, Z=4, the final R=0.038 8 and wR=0.071 7 for 2 697 observed reflections (I>2σ(I)). In the crystal structure, the Zinc atom is six-coordinated with four carboxylate oxygen atoms from two different carboxylate groups and two nitrogen atoms from Medpq ligand, showing a slightly distorted octahedral geometry. Furthermore, it exhibits a one-dimensional structure with Pht-Zn-Medpq as building units. CCDC: 716600.  相似文献   

6.
刘霞  赵军  冯长根 《化学学报》2006,64(19):1988-1992
合成了(C6H9N2O2S)5HP2Mo18O62•15H2O (SPOM-1)和(C6H9N2O2S)H8P2Mo15V3O62•8H2O (SPOM-2)两种新的含有磺胺的多金属氧酸盐, 通过元素分析、IR光谱对其结构进行了表征. 在人雄激素非依赖性前列腺癌细胞系PC-3M内, 对合成的多金属氧酸盐进行了抗肿瘤活性的研究. 研究发现, SPOM-1, SPOM-2在体外能明显抑制前列腺癌PC-3M细胞, 并呈一定的量效关系, EC50分别为38, 11 g•mL-1; 治疗指数(TI)分别为12.07, 26.82; SPOM-2的抗前列腺癌PC-3M细胞活性大于SPOM-1.  相似文献   

7.
辛炳炜 《应用化学》2008,25(8):895-0
水;离子液体;PEG;苯硼酸;Suzuki偶联反应;Suzuki-Type偶联反应  相似文献   

8.
薰衣草化学成分的研究   总被引:1,自引:0,他引:1  
吴霞  刘净  于志斌  叶蕴华  周亚伟 《化学学报》2007,65(16):1649-1653
采用各种柱色谱方法对新疆产薰衣草花的95%乙醇提取物的化学成分进行分离纯化, 分离得到9个化合物, 根据理化性质和光谱数据分别鉴定为5'-β-D-glucopyranosyloxyjasmonic butyl ester (1), 5'-β-D-glucopyranosyloxyjasmonic acid (2), dichotomoside E (3), 丁二酸(4), 咖啡酸(5), 3-甲氧基-4-O-β-D-葡萄糖苷-阿魏酸(6), β-谷甾醇(7), 熊果酸(8), 胡萝卜苷(9). 其中化合物1为新化合物, 化合物29均为首次从薰衣草中分离得到.  相似文献   

9.
锰的两种配位聚合物的合成和晶体结构   总被引:1,自引:0,他引:1  
卓馨  李一志 《无机化学学报》2006,22(10):1788-1792
用水热法合成2个新的三维配位聚合物:[Mn2(Pyzca)2Cl2]n (1)和[Mn2(Pyzca)2Br2]n (PyzcaH=2-Pyrazinecarboxylic acid) (2),并对这2个聚合物进行了元素分析、红外光谱、X-射线单晶等表征。配合物12的晶体都属于三斜晶系,P1空间群。配合物12分别通过环和分子间氢键连接无限延伸形成三维网格状结构。  相似文献   

10.
采用共沉淀法制备了3种不同含铁量的氧化铁改性蛭石(Verm-Fex,x=5,10,20),研究了纯蛭石(Verm)和Verm-Fex的表面性质及吸附氟的特性。与样品Verm比较,3种Verm-Fex中Verm的d(002)层间距略有升高;Verm-Fex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和外表面积的增加幅度更明显。4种样品的等电点(IEP)也随含铁量的增加而明显升高;初始pH=5.0时,它们的表面ζ电位分别为-16.4,-6.1,10.5和28.4 mV。4种样品对氟的等温吸附数据用单吸附位Langmuir模型拟合(R2=0.973~0.995)时,Verm的R2最高;双吸附位Langmuir模型可很好地描述3种Verm-Fex样品的等温吸附过程(R2=0.991~0.998);Freundlich模型对4种样品吸附数据的拟合度较差(R2=0.835~0.937),但R2随样品含铁量的增加而略微升高。初始pH=5.0时,Verm和Verm-Fex(x=5,10,20)对氟的最大吸附容量(qmax)分别为3.18,6.76,9.27和12.43 mg·g-1。可见,Verm-Fex(尤其含铁量较高的产物)对表生环境中氟的吸附固定性能明显高于Verm。  相似文献   

11.
The layered compounds LiCoO2, LiNiO2 and spinel compound LiMn2O4 have served as very effective cathode active materials in lithium ion rechargeable batteries. Generally, their high conductive resistance easily results in a serious polarization and poor utilization of active materials.In order to make full use of the active materials and increase the capacity, the charge-discharge rate and the cycle life of lithium ion batteries, conductive additives are often added into the above cathode materials to form a conductive network. Carbon materials, such as carbon black, graphite powders and chemical vapor deposit carbon fibers have been widely used as conductive additives owing to their high electrical conductivity and chemical inertness. To effectively utilize the active materials, the contents of these carbon additives in the cathode often reach up to 10~20wt%. This leads to a great need for binder, for example, 10wt% or more. It follows therefore a considerable increase in volume of the lithium batteries and lower energy density because of the large amount of carbon additives and binder in the cathode.By substituting carbon nanotubes (CNTs) for carbon black, graphite powders or chemical vapor deposit carbon fibers, much conductive additives and binder are saved, and the cathode with only 3~5wt% of conductive additives CNTs shows excellent rate capacity. At the discharge rate 0.5C,2.0C and 3.0C, the LiCoO2 cathode with CNTs exhibits discharge capacity up to 134mAh/g, 126 and 120mAh/g, respectively. The explanation is given as follows. Firstly, their microstructure and graphitic crystallinity are very important for electron transport. CNTs employed in the experiments comprise an array of complete graphite sheets seamlessly wrapped into cylindrical tubes which are concentrically nested like the rings of a tree trunk. Thus, the process of -electrons transport occurs in graphite sheet in super-conjugative manner when they move from one end to the other end in CNTs. Apparently, the CNTs' microstructure does good to electron transport. On the other hand,being highly graphitic (concluded from XRD patterns), CNTs also displays high electron conductivity. Secondly, being smaller in diameter, CNTs possess much larger number of primary particles in unit mass than other carbon materials. Hence, it results in a lower percolation threshold in the case of CNTs. Finally, owing to their high surface energy, CNTs fallen into nano-materials tend to aggregate and then form firm webs effectively entrapping LiCoO2 particles during the preparation of the cathode to guarantee their close contact with the active materials.Accordingly, effective electron channels are provided to lessen the polarization loss.  相似文献   

12.
采用一种新策略对Li1.184[Ni0.15Mn0.516Co0.15]O2进行改性,即通过气流破碎、高压均质混合分散和喷雾干燥的方法得到与碳纳米管复合的富锂锰基正极材料(CNT@LMR)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和拉曼光谱(Raman)的方法对改性的材料进行了表征,发现碳纳米管导电网络均匀地分布在富锂锰基正极材料的表面,而且在材料内部的一次颗粒之间也有大量的碳纳米管存在。电化学性能测试表明,碳纳米管改性后的富锂锰基正极拥有更好的倍率性能和循环寿命。在5C倍率下经过改性的富锂锰基正极的放电比容量为141.4 mAh·g-1,远高于未改性的富锂锰基正极的放电比容量(76.6 mAh·g-1)和碳纳米管仅作为富锂锰基正极导电剂时的放电比容量(110.7 mAh·g-1)。在1C倍率下循环100次后,碳纳米管改性的富锂锰基正极的容量保持率在87.2%,高于富锂锰基正极(77.8%)。不同循环次数下的电化学阻抗谱表明,均匀分布在富锂锰基正极材料表面的碳纳米管网状结构有效地改善了电极/电极液的界面反应,抑制了电极固体电解质界面(SEI)膜的增厚和减缓了电极的极化。同时,材料内部的碳纳米管导电网络降低了一次颗粒间的内阻并加快了电极的电荷转移过程。  相似文献   

13.
Carbon nanotubes (CNTs), including multi-walled CNTs (MWCNTs) and single-walled CNTs (SWCNTs), are employed as conductive additives in lithium ion batteries. The effects of MWCNTs’ carbon precursors, diameter, and weight fraction on the electrochemical behavior of MWCNTs/LiCoO2 composite cathode are investigated. Meanwhile, a comparison is made between SWCNTs /LiCoO2 and MWCNTs/LiCoO2. Among the three kinds of carbon precursors: CH4, natural gas, and C2H2, MWCNTs prepared from CH4 are very fit for acting as conductive additives due to their better crystallinity and lower electrical resistance. MWCNTs with smaller diameter favor improving the electrochemical behavior of MWCNTs/LiCoO2 composite cathode at higher charge/discharge rate owing to their advantage in primary particle number in unit mass. To make full use of LiCoO2 at higher rate, it is necessary to add at least 5 wt.% of MWCNTs with a diameter 10~30 nm. However, SWCNTs are not expected to be added into LiCoO2 composite cathode since they tend to form bundles.  相似文献   

14.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

15.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

16.
Stupercapacitors or electrochemical capacitors(ECs) have attracted considerable attentionas an intermediate power source between conventional capacitors and batteries since they possesshigh power density and energy density, exhibit excellent reversibility, and have long cycle life1.Conductive polymers2, electrically conductive metal oxide3,4, activated carbon5 and carbonnanotubes(CNTs) 6-9 have been used as supercapacitor electrode materials. LiNi0.sCo0.2O2 is apromising lithium battery material because it has some advantages of both LiNiO2 and LiCoO2besides its low cost and high power10.In this paper, the electrochemical properties of supercapacitors based on LiNi0.8Co0.2O2/carbonnanotubes composite and LiNi0.8Co0.2O2/acetylene black composite and CNTs in 1 mol/LLiClO4/EC+DEC [V(EC):V(DEC)=1:1] electrolyte have been investigated by means of constantcharge/discharge current tests. The experiment results show that the LiNi0.8Co0.2O2/carbon nanotubescomposite has better properties than others, and the maximun specific capacitance of thesupercapacitor can reach 284.88F/g, while the energy density is up to 158.27Wh/Kg.That discharge capacities, coulombic efficiencies and energy densities at the first cycle and themaximum value and capacity retention at the 100th cycle for supercapacitors using differentelectrode materials (A) LiNi0.8Co0.2O2/acetylene black, (B) LiNi0. 8Co0.2O2/CNTs, (C) CNTs is listedin table 1*Capacity retention rate obtained by dividing the discharge capacity at the 100th cycle by themaximum valueFrom above, the LiNi0. 8Co0.2O2/carbon nanotubes composite should be a good candidatesupercapacitor electrode material.  相似文献   

17.
The electrochemical properties and cyclic performances of commercial LiFePO4 cathode material with different ratio of carbon black (CB) and carbon nanotubes (CNTs) as conductive material were tested in this study. Compared with other samples, the sample with 3 wt % CNTs exhibited the best electro-chemical and cyclic performances at various discharging rate at room temperature; and adhesion strength of electrode was improved by adding CNTs. The enhanced electrode performance may due to the unique natures of CNTs and the contact area of CNTs with active material or current collector.  相似文献   

18.
制备了正极中只含有一种导电剂(KS-6或Super-P)的锂离子电池,比较了它们的倍率放电性能并对放电过程进行了模拟。以Super-P为正极导电剂的电池15C放电容量为1C容量的84.3%,以KS-6为正极导电剂的电池15C放电容量为1C容量的21.8%,前者的倍率放电性能明显优于后者。数学模拟结果显示,以KS-6为导电剂的正极的Bruggeman系数为3.1,以Super-P为导电剂的正极的Bruggeman系数为2.76,前者明显大于后者,认为这是由于KS-6的片状形貌使其容易相互平行排列造成的。大电流放电时,以KS-6为导电剂的正极中出现了电解质耗竭而导致该区域内电化学反应停止的现象,从而导致电池放电容量急剧降低。  相似文献   

19.
本文采用磷酸铁工艺路线制备碳包覆的磷酸铁锂(LiFePO4/C)复合正极材料,系统考察气流粉碎分级过程对LiFePO4/C正极材料及全电池性能的影响. 研究表明:分级前磷酸铁锂颗粒粒度较大,中值粒径为17.37μm,呈规整球形形貌,具有较高的振实密度和碳含量;分级后球形被打碎,振实减小. 全电池测试结果显示:分级过程对全电池的容量、交流内阻、直流内阻、功率密度的影响较小;但分级前电芯的低温放电容量保持率和550周的高温循环保持率分别60.1%和87.5%,明显优于分级后的49.5%和84.7%. 分级前碳层能均匀包覆在磷酸铁锂表面形成均匀导电网络,而分级过程将磷酸铁锂的碳层有一定的剥离和破坏导致性能下降.  相似文献   

20.
在锂硫电池正极材料的研究中,碳材料可以有效改善电池倍率及循环性能.为了提高锂硫电池的高倍率放电性能,通过水热合成的方法,制备了由非均匀粒径碳球组成的碳材料.与硫热合成后,硫均匀分布在碳材料表面及周围,复合材料含硫量为52wt%.0.2C放电电流下,首次放电比容量为1174mAh·g-1,100次循环后放电比容量为788mAh·g-1.在4C的放电电流下,放电比容量稳定维持在600mAh·g-1,循环过程中,库伦效率高于90%.该碳材料有良好的导电网络,且制备方便,成本低廉,对于穿梭效应和放电过程中的膨胀效应有一定的抑制作用,是一种优秀的正极材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号