首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分子基磁性材料,可用于信息存储、磁成像、光磁开关等.因此,分子基磁体设计与合成一直是当今科学研究的热门课题.受分子基磁体的启发,本研究合成了新型光调控磁性的分子基磁体含有2-硝基丙烷自由基和2,2,6,6-四甲基-1-氧基哌啶(TEMPO)自由基的联茚满烯二酮衍生物4.化合物4的合成方法为,以光致变色的7,7'-二甲基-3,3'-二乙基-3,3'-二羟基-2,2'-二茚叉基-1,1'-二酮(1)为起始原料,经过溴代反应,得到7,7'-二(溴代甲基)-3,3'-二乙基-3,3'-二羟基-2,2'-二茚叉基-1,1'-二酮(2).化合物2和2-硝基丙烷在乙醇钠的乙醇溶液中反应得到含有2-硝基丙烷自由基和醛基的联茚满烯二酮衍生物3.根据1H NMR,MS和元素分析对化合物3的结构分析表明,2-硝基丙烷基团和化合物3苯环上的亚甲基相连.对化合物3的1H NMR和ESR波谱进一步的分析表明2-硝基丙烷基团上存在单电子自旋.在化合物3的基础上,稳定的氮氧自由基TEMPO被成功地引入光致变色的联茚满烯二酮衍生物的苯环上得化合物4.对化合物2,3和4光照前后的性质变化进行了研究.固态化合物2,3和4光照下皆可发生光致变色;固态化合物2光照后可测得ESR波谱;固态化合物3和4光照前后皆可测得ESR波谱,且光照前后ESR波谱发生变化.磁化率测试表明,固态化合物4光照前后皆具有反铁磁性,且光照后反铁磁相互作用增强.测试结果表明固态化合物3和4光照后有两个或三个自旋中心,分别是2-硝基丙烷或TEMPO自由基以及光照产生的来自于联茚满烯二酮的羰基上的自由基.固态化合物4的颜色和磁性可用光调控.  相似文献   

2.
以L-谷氨酰胺为原料,经氨基保护、缩合闭环、氨基脱保护得中间体3-氨基-2,6-哌啶二酮盐酸盐(4),另以不同的2-甲基-硝基苯甲酸甲酯为原料,经硝基还原、Balz-Schiemann反应、硝化反应、溴化反应得一系列2-溴甲基苯甲酸甲酯衍生物9a~9d和12a~12b;4与不同的2-溴甲基苯甲酸甲酯衍生物在弱碱下反应得到了一系列新的α-(异吲哚啉酮-2-基)戊二酰亚胺含氟类似物10a~10d,13a~13b和15;13a和13b经硝基还原得两个目标化合物14a和14b.合成化合物的结构经1H NMR和HRMS确证.用噻唑蓝(MTT)法测试了7个目标化合物对白血病细胞株K562的抑制活性,结果表明,化合物10a对K562细胞的抑制作用与来那度胺相当;化合物15对K562细胞具有较强的抑制作用,在25?g/m L浓度下抑制率达99%.  相似文献   

3.
通过4,5-二氯(溴)-3(2H)-哒嗪酮与7-羟基-4-甲基香豆素在CH3CN/K2CO3体系下的缩合反应,将具有生物活性的哒嗪酮环引入到苯并吡喃酮结构中,设计、合成了9个含哒嗪酮环的香豆素类化合物,其中8个为新化合物.所有化合物的结构均经NMR,MS和元素分析确证.初步生物活性测试结果表明:化合物4-氯-5-(4-甲基-2H-1-苯并吡喃-2-酮-7-氧基)-2-(4-硝基苯基)-3(2H)-哒嗪酮对黄瓜根部具有一定的抑制作用.  相似文献   

4.
在微量O2存在时,酮腙与NO发生偶氮-硝化反应,高选择性地生成了α-硝基偶氮化合物.产物结构经NMR,IR,MS,HR-ESI-MS和X射线单晶衍射等技术确证.通过高效液相色谱对反应体系中不同O2含量(空气)下的产物组成进行分析,结果表明体系中O2含量的控制对α-硝基偶氮化合物的生成反应的选择性有较大影响.  相似文献   

5.
在合成含咪唑啉2,4-二酮磷酸酯和磷酰胺类化合物的基础上,根据Hydantocidin在植物体内的作用形式是Hydantocidin 5’-phosphate的特点,将5-[4-羟基-3-硝基-苯(苄)基]-2,4-咪唑啉二酮中间体与O,N-二烷基硫代磷酰氯反应合成得到了18个结构新颖的O-烷基-N-烷基-5-[4-羟基-3-硝基-苯(苄)基]-2,4-咪唑啉二酮硫代磷酰胺酯类化合物,其结构通过IR,1H NMR,31P NMR和元素分析表征.初步生物测定结果表明,化合物O-乙基(丙基)-N-异丙基-5-(4-羟基-3-硝基苄基)-2,4-咪唑啉二酮硫代磷酰胺酯(B10,B16)在100μg/mL浓度下对油菜的抑制率为64.1%和69.6%,O-甲基-N-正丁基-5-(4-羟基-3-硝基苄基)-2,4-咪唑啉二酮硫代磷酰胺酯(B15)对蚜虫和小菜蛾均表现了良好的杀虫活性,在300μg/mL浓度下24 h的校正死亡率分别为100%和95%.  相似文献   

6.
几种β-二酮化合物及其互变异构体的光谱   总被引:20,自引:0,他引:20  
合成了 6种β-二酮化合物 :1 ,3-二 (4 -硝基苯基 ) -1 ,3-丙二酮 ,1 -(4 -硝基苯基 ) -3-(3-硝基苯基 ) -1 ,3-丙二酮 ,1 ,3-二 (3-硝基苯基 ) -1 ,3-丙二酮 ,1 ,3-二 (4 -氨基苯基 ) -1 ,3-丙二酮 ,1 -(4 -氨基苯基 ) -3-(3-氨基苯基 ) -1 ,3-丙二酮和 1 ,3-二 (3-氨基苯基 ) -1 ,3-丙二酮 .采用多种光谱法对其结构进行了鉴定 .测量了不同溶剂中β-二酮化合物的酮式含量 ,给出了酮式 -烯醇式异构化平衡常数和烯醇式异构体的存在比例  相似文献   

7.
陆明  魏运洋  吕春绪 《有机化学》1995,15(4):408-410
本文以乙二胺, 乙二醛和脲为原料, 通过Mannich反应, 合成出2,5,7,9-四氮杂双环[4.3.0]壬-8-酮盐酸盐(1); 化合物1 亚硝化给出2,5-二亚硝基-2,5,7,9-四氮杂双环[4.3.0]壬-8-酮(2); 硝化化合物2制得2,5,7,9-四硝基-2,5,7,9-四氮杂双环[4.3.0]壬-8-酮(3); 化合物3水解制得1,4-二硝基-2,3-二硝胺基哌嗪(4).  相似文献   

8.
4-芳基取代丁烯酮类化合物可用于合成香料、电镀、杀虫驱虫等方面,因其结构特性还可作为药物合成的中间体。本文通过α-硝化的二硫缩烯酮与芳醛在碱的催化下发生缩合反应,并脱去硫环,得到一系列1-硝基-4-芳基-3-丁烯酮类化合物。本文利用新的合成方法向4-芳基取代丁烯酮的1-位引入了硝基,使该碳原子具有更强的活性,该类化合物目前鲜有报道,在有机合成方向将会有很大的研究空间。这种方法反应条件容易控制,产率极高,提纯方法简便。  相似文献   

9.
以2-氨基-5-硝基苯甲酸或4-氯苯甲酸、1-苯基-2-吡咯烷酮为原料,经过酯化、亚胺合成、关环、不对称合成四步反应合成了2种新的Blebbistatin化合物:3a-羟基-6-硝基-1-苯基-1,2,3,3a-四氢-吡咯并[2,3-b-喹啉-4-酮或3a-羟基-7-氯-1-苯基-1,2,3,3a-四氢-吡咯并[2,3-b]-喹啉-4-酮.通过IR,1H NMR,元素分析证实其结构,并测定了一些重要中间体的单晶结构.初步研究化合物的光学性质发现,所合成的新Blebbistatin化合物的紫外吸收与荧光发射强度均比前人合成的Blebbistatin化合物高.  相似文献   

10.
三碘化钐催化的一锅法合成α-胺基腈化合物   总被引:1,自引:0,他引:1  
在三碘化钐催化下,羰基化合物(醛、酮)、胺(伯胺、仲胺)和三甲基氰硅烷(TMSCN)能进行Strecker反应,以良好的收率得到相应的α-氰基化合物.在该反应条件下,底物中的官能团(硝基、碳碳双键和卤素等)不受影响.  相似文献   

11.
本文报导一系列2-氨基-5-取代-4-噻唑基膦酸酯和2-氨基-4-取代-5-噻唑基膦酸酯的合成. 这类化合物显示了一定的杀菌活性.  相似文献   

12.
The slow addition of NO to a CCl(4) solution of VCl(4) reproducibly forms the known polymer [V(NO)(3)Cl(2)](n)() as a dark brown powder. Treatment of a CH(2)Cl(2) suspension of [V(NO)(3)Cl(2)](n)() with excess THF generates mer-(THF)(3)V(NO)Cl(2) (1) which can be isolated as an orange crystalline material in 55% yield. The reaction of 1 with excess MeCN or 1 equiv of trimpsi (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) provides yellow-orange (MeCN)(3)V(NO)Cl(2)xMeCN (2xMeCN) and yellow (trimpsi)V(NO)Cl(2) (3), respectively. A black, crystalline complex formulated as [NO][VCl(5)] (4) is formed by the slow addition of NO to neat VCl(4) or by the reaction of excess ClNO with neat VCl(4). Complex 4 is extremely air- and moisture-sensitive, and IR spectroscopy suggests that in solutions and in the gas phase it dissociates back into VCl(4) and ClNO. Reaction of 4 with excess [NEt(3)(CH(2)Ph)]Cl generates [NEt(3)(CH(2)Ph)](2)[VCl(6)]x2CH(2)Cl(2) (5x2CH(2)Cl(2)), which can be isolated as deep-red crystals in 51% yield. All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 1, 2xMeCN, and 5x2CH(2)Cl(2) have been established by single-crystal X-ray diffraction analyses.  相似文献   

13.
Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of air or N2; diluents at 295 +/- 2 K were studied using smog chamber/FTIR techniques. Relative rate methods were used to measure k(Cl + CH3CHF2) = (2.37 +/- 0.31) x 10(-13) and k(OH + CH3CHF2) = (3.08 +/- 0.62) x 10(-14) cm3 molecule(-1) s(-1). Reaction with Cl atoms gives CH3CF2 radicals in a yield of 99.2 +/- 0.1% and CH2CHF2 radicals in a yield of 0.8 +/- 0.1%. Reaction with OH radicals gives CH3CF2 radicals in a yield >75% and CH2CHF2 radicals in a yield <25%. Absolute rate data for the Cl reaction were measured using quantum-state selective LIF detection of Cl(2P(j)) atoms under pseudo-first-order conditions. The rate constant k(Cl + CH3CHF2) was determined to be (2.54 +/- 0.25) x 10(-13) cm3 molecule(-1) s(-1) by the LIF technique, in good agreement with the relative rate results. The removal rate of spin-orbit excited-state Cl(2P(1/2)) (denoted Cl) in collisions with CH3CHF2 was determined to be k(Cl + CH3CHF2) = (2.21 +/- 0.22) x 10(-10) cm3 molecule(-1) s(-1). The atmospheric photooxidation products were examined in the presence and absence of NO(x). In the absence of NO(x)(), the Cl atom-initiated oxidation of CH3CHF2 in air leads to formation of COF2 in a molar yield of 97 +/- 5%. In the presence of NO(x), the observed oxidation products include COF2 and CH3COF. As [NO] increases, the yield of COF2 decreases while the yield of CH3COF increases, reflecting a competition for CH3CF2O radicals. The simplest explanation for the observed dependence of the CH3COF yield on [NO(x)] is that the atmospheric degradation of CH3CF2H proceeds via OH radical attack to give CH3CF2 radicals which add O2 to give CH3CF2O2 radicals. Reaction of CH3CF2O2 radicals with NO gives a substantial fraction of chemically activated alkoxy radicals, [CH3CF2O]. In 1 atm of air, approximately 30% of the alkoxy radicals produced in the CH3CF2O2 + NO reaction possess sufficient internal excitation to undergo "prompt" (rate >10(10) s(-1)) decomposition to give CH3 radicals and COF2. The remaining approximately 70% become thermalized, CH3CF2O, and undergo decomposition more slowly at a rate of approximately 2 x 10(3) s(-1). At high concentrations (>50 mTorr), NO(x) is an efficient scavenger for CH3CF2O radicals leading to the formation of CH3COF and FNO.  相似文献   

14.
Smog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (C(4)F(9)CH(2)CH(2)OH, 4:2 FTOH) in the presence of NO(x) in 700 Torr of N(2)/O(2) diluent at 296 K. Chemical activation effects play an important role in the atmospheric chemistry of the peroxy, and possibly the alkoxy, radicals derived from 4:2 FTOH. Cl atoms react with C(4)F(9)CH(2)CH(2)OH to give C(4)F(9)CH(2)C(*)HOH radicals which add O(2) to give chemically activated alpha-hydroxyperoxy radicals, [C(4)F(9)CH(2)C(OO(*))HOH]*. In 700 Torr of N(2)/O(2) at 296 K, approximately 50% of the [C(4)F(9)CH(2)C(OO(*))HOH]* radicals decompose "promptly" to give HO(2) radicals and C(4)F(9)CH(2)CHO, the remaining [C(4)F(9)CH(2)C(OO(*))HOH]* radicals undergo collisional deactivation to give thermalized peroxy radicals, C(4)F(9)CH(2)C(OO(*))HOH. Decomposition to HO(2) and C(4)F(9)CH(2)CHO is the dominant atmospheric fate of the thermalized peroxy radicals. In the presence of excess NO, the thermalized peroxy radicals react to give C(4)F(9)CH(2)C(O(*))HOH radicals which then decompose at a rate >2.5 x 10(6) s(-1) to give HC(O)OH and the alkyl radical C(4)F(9)CH(2)(*). The primary products of 4:2 FTOH oxidation in the presence of excess NO(x) are C(4)F(9)CH(2)CHO, C(4)F(9)CHO, and HCOOH. Secondary products include C(4)F(9)CH(2)C(O)O(2)NO(2), C(4)F(9)C(O)O(2)NO(2), and COF(2). In contrast to experiments conducted in the absence of NO(x), there was no evidence (<2% yield) for the formation of the perfluorinated acid C(4)F(9)C(O)OH. The results are discussed with regard to the atmospheric chemistry of fluorotelomer alcohols.  相似文献   

15.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in degradation and breakdown of the cluster to generate dinitrosyl iron complexes (DNICs). In some cases the formation of DNICs from such cluster systems can lead to activation of a regulatory pathway or the loss of enzyme activity. In order to understand the basic chemistry underlying these processes, we have investigated the reactions of NO with synthetic [2Fe-2S] and [4Fe-4S] clusters. Reaction of excess NO(g) with solutions of [Fe2S2(SR)4](2-) (R = Ph, p-tolyl (4-MeC6H4), or 1/2 (CH2)2-o-C6H4) cleanly affords the respective DNIC, [Fe(NO)2(SR)2](-), with concomitant reductive elimination of the bridging sulfide ligands as elemental sulfur. The structure of (Et4N)[Fe(NO)2(S-p-tolyl)2] was verified by X-ray crystallography. Reactions of the [4Fe-4S] clusters, [Fe4S4(SR)4](2-) (R = Ph, CH2Ph, (t)Bu, or 1/2 (CH2)-m-C6H4) proceed in the absence of added thiolate to yield Roussin's black salt, [Fe4S3(NO)7](-). In contrast, (Et4N)2[Fe4S4(SPh)4] reacts with NO(g) in the presence of 4 equiv of (Et4N)(SPh) to yield the expected DNIC. For all reactions, we could reproduce the chemistry effected by NO(g) with the use of trityl-S-nitrosothiol (Ph3CSNO) as the nitric oxide source. These results demonstrate possible pathways for the reaction of iron-sulfur clusters with nitric oxide in biological systems and highlight the importance of thiolate-to-iron ratios in stabilizing DNICs.  相似文献   

16.
The branching ratio β = k(1b)/k(1a) for the formation of methyl nitrate, CH(3)ONO(2), in the gas-phase CH(3)O(2) + NO reaction, CH(3)O(2) + NO → CH(3)O + NO(2) (1a), CH(3)O(2) + NO → CH(3)ONO(2) (1b), has been determined over the pressure and temperature ranges 50-500 Torr and 223-300 K, respectively, using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. At 298 K, the CH(3)ONO(2) yield has been found to increase linearly with pressure from 0.33 ± 0.16% at 50 Torr to 0.80 ± 0.54% at 500 Torr (errors are 2σ). Decrease of temperature from 300 to 220 K leads to an increase of β by a factor of about 3 in the 100-200 Torr range. These data correspond to a value of β ≈ 1.0 ± 0.7% over the pressure and temperature ranges of the whole troposphere. Atmospheric concentrations of CH(3)ONO(2) roughly estimated using results of this work are in reasonable agreement with those observed in polluted environments and significantly higher compared with measurements in upper troposphere and lower stratosphere.  相似文献   

17.
The photochemistry of various Roussin's red ester compounds of the general formula Fe(2)(SR)(2)(NO)(4), where R = CH(3), CH(2)CH(3), CH(2)C(6)H(5), CH(2)CH(2)OH, and CH(2)CH(2)SO(3)(-), were investigated. Continuous photolyses of these ester compounds in aerated solutions led to the release of NO with moderate quantum yields for the photodecomposition of the ester (Phi(RSE) = 0.02-0.13). Electrochemical studies using an NO electrode demonstrated that 4 mol of NO are generated for each mole of ester undergoing photodecomposition. Nanosecond flash photolysis studies of Fe(2)(SR)(2)(NO)(4) (where R = CH(2)CH(2)OH and CH(2)CH(2)SO(3)(-)) indicate that the initial photoreaction is the reversible dissociation of NO. In the absence of oxygen, the presumed intermediate, Fe(2)(SR)(2)(NO)(3), undergoes second-order reaction with NO to regenerate the parent cluster with a rate constant of k(NO) = 1.1 x 10(9) M(-1) s(-1) for R = CH(2)CH(2)OH. Under aerated conditions the intermediate reacts with oxygen to give permanent photochemistry.  相似文献   

18.
Treatment of the complexes [Re(NO)2(PR3)2][BAr(F)4] (R = Cy, 1 a; R = iPr, 1 b) with phenyldiazomethane gave the cationic benzylidene species [Re{CH(C6H5)}(NO)2(PR3)2][BAr(F)4] (2 a and 2 b) in good yields. Upon reaction of 2 a and 2 b with acetonitrile, the consecutive formation of [Re(N[triple bond]CCH3)(N[triple bond]CPh)(NO)(OC(CH3)=NH)(PR3)][BAr(F)4] (3 a and 3 b) and [Re(NCCH3)(OC{CH3}NH{C6H5})(NO)(PR3)2][BAr(F)4] (4 a and 4 b) was observed. The proposed reaction sequence involves the coupling of coordinated NO, carbene and acetonitrile molecules to yield the (1Z)-N-[imino(phenyl)methyl]ethanimidate ligand. The coupling of the nitrosyl and the benzylidene is anticipated to occur first, forming an oximate species. The subsequent acetonitrile addition can be envisaged as a heteroene reaction of the oximate and the acetonitrile ligand yielding 3 a and 3 b, which in turn can cyclise and undergo a prototropic shift initiated by an internal attack of the ethaneimidate ligand on the benzonitrile moiety to afford 4 a and 4 b.  相似文献   

19.
The doublet potential energy surfaces involved in the decomposition of the nitromethane radical anion (CH(3)NO(2) (-)) have been studied by using the multistate extension of the multiconfigurational second-order perturbation method (MS-CASPT2) in conjunction with large atomic natural orbital-type basis sets. A very low energy barrier is found for the decomposition reaction: CH(3)NO(2) (-)-->[CH(3)NO(2)](-)-->CH(3)+NO(2) (-). No evidence has been obtained on the existence of an isomerization channel leading to the initial formation of the methylnitrite anion (CH(3)ONO(-)) which, in a subsequent reaction, would yield nitric oxide (NO). In contrast, it is suggested that NO is formed through the bimolecular reaction: CH(3)+NO(2) (-)-->[CH(3)O-N-O](-)-->CH(3)O(-)+NO. In particular, the CASSCF/MS-CASPT2 results indicate that the methylnitrite radical anion CH(3)ONO(-) does not represent a minimum energy structure, as concluded by using density functional theory (DFT) methodologies. The inverse symmetry breaking effect present in DFT is demonstrated to be responsible for such erroneous prediction.  相似文献   

20.
The kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene (o-CH(3)C(6)H(4)NO(2)) have been studied computationally at the G2M(RCC, MP2)//B3LYP/6-311G(d, p) level of theory in conjunction with rate constant predictions with RRKM and TST calculations. The results of the calculations reveal 10 decomposition channels for o-nitrotoluene and its six isomeric intermediates, among them four channels give major products: CH(3)C(6)H(4) + NO(2), C(6)H(4)C(H)ON (anthranil) + H(2)O, CH(3)C(6)H(4)O (o-methyl phenoxy) + NO, and C(6)H(4)C(H(2))NO + OH. The predicted rate constants in the 500-2000 K temperature range indicate that anthranil production, taking place initially by intramolecular H-abstraction from the CH(3) group by NO(2) followed by five-membered ring formation and dehydration, dominates at temperatures below 1000 K, whereas NO(2) elimination becomes predominant above 1100 K and CH(3)C(6)H(4)O formation by the nitro-nitrite isomerization/decomposition process accounts for only 5-11% of the total product yield in the middle temperature range 800-1300 K. The branching ratio for CH(2)C(6)H(4)NO formation by the decomposition process of CH(2)C(6)H(4)N(O)OH is negligible. The predicted high-pressure-limit rate constants with the rate expression of 4.10 x 10(17) exp[-37000/T] s(-1) for the NO(2) elimination channel and 9.09 x 10(12) exp[-25800/T] s(-1) for the H(2)O elimination channel generally agree reasonably with available experimental data. The predicted high-pressure-limit rate constants for the NO and OH elimination channels are represented as 1.49 x 10(14) exp[-30000/T] and 1.31 x 10(15) exp[-38000/T] s(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号