首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
KOH活化木屑生物炭制备活性炭及其表征   总被引:5,自引:2,他引:3  
以木屑热裂解的生物质炭为原料,氢氧化钾为活化剂,采用化学活化法制备活性炭,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。 利用N2吸附实验、XRD和FTIR等实验技术,对原料与制备活性炭的结构与性能进行了表征。 结果表明,在碱炭质量比为1.5、活化温度750 ℃、活化时间2 h的条件下,所制备的活性炭对亚甲基蓝吸附值为255 mg/g,BET总比表面积为1514 m2/g,中孔比表面积为110 m2/g,吸附总孔容为0.821 cm3/g,中孔孔容为0.117 cm3/g,吸附平均孔径为2.170 nm。  相似文献   

2.
以四氯化钛为钛源采用溶胶凝胶法制备了介孔TiO_2材料,并对所制备的材料采用不同浓度的酸碱溶液进行了水热处理。通过SEM、XRD、N_2/吸附-脱附等检测手段对样品进行了表征。以氙灯(500 W)为光源,亚甲基蓝为目标降解物,考察了样品的光催化性能。结果表明:6 mol/L NaOH水热处理后的介孔TiO2对亚甲基蓝的吸附及光催化降解效果都有很大提高,且pH变化对光催化降解影响不大。  相似文献   

3.
通过柠檬酸溶胶-凝胶反应,合成了新型功能介孔NiNb2O6吸附剂,通过X-射线粉末衍射仪(XRD)、透射电镜(TEM)和比表面积及孔径分析(BET)对其结构进行表征。通过影响因素实验、吸附动力学实验和等温吸附实验,探讨了NiNb2O6吸附剂对水溶液中亚甲基蓝的吸附性能和机理。结果表明,NiNb2O6介孔吸附剂具有正交相晶体结构,平均粒径为30~200nm,比表面积为66.3m2/g。吸附剂用量、温度和pH值均对吸附行为有一定的影响;在35℃时,亚甲基蓝在吸附剂上吸附行为符合Langmuir方程,吸附动力学符合拟二级动力学方程,初始浓度为40mg/L,pH值为7.03时,0.2g介孔吸附剂NiNb2O6对亚甲基蓝的吸附量最大,吸附过程中液膜扩散为主要速率控制步骤。  相似文献   

4.
本文采用溶胶-凝胶法制备Na10[α-Si W9O34]/Ti O2/Ag复合材料。用IR、XRD、UV‐Vis漫反射光谱、SEM、ED-Mapping等方法进行了表征和分析。用N2吸附-脱附等温线考察了催化剂的比表面、孔径,表明产物为介孔材料。以标题化合物作为光催化剂催化降解亚甲基蓝,探讨催化剂用量、亚甲基蓝的初始浓度、溶液的p H值等条件对亚甲基蓝脱色率的影响,结果表明:催化剂加入量为1 mg·L-1、亚甲基蓝的初始浓度为5 mg·L-1,p H=2.0,脱色率达到94.7%。  相似文献   

5.
以介孔氧化硅材料MCM-41为模板,硝酸锰为锰源,通过浸渍、450℃焙烧4 h得到Mn-MCM-41,用NaOH溶液溶解除去氧化硅模板得到锰氧化物,采用XRD,HRTEM和N2吸附-脱附等测试技术对产物进行了表征.结果表明,所得产物是纯相的β-MnO2纳米纤维,直径小于3 nm.纳米纤维之间有序排列组成类似MCM-41模板的介孔结构,其比表面积达到136.5 m2/g.将所制备的β-MnO2纳米纤维用于催化过氧化氢氧化分解质量浓度为60 mg/L的亚甲基蓝(MB)模拟染料废水,经100 min反应后,亚甲基蓝水溶液脱色率达到97.59%.所制备的催化剂对降解处理高浓度亚甲基蓝溶液,具有降解脱色率高和反应速度快等优点.  相似文献   

6.
以硅溶胶为模板、盐酸胍为前驱体制备了介孔氮化碳(meso-g-CN),并首次研究了其对亚甲基蓝的吸附消除性能.采用X-射线衍射、傅里叶红外光谱、透射电子显微镜、N2物理吸附、X-射线光电子能谱和CO_2程序升温脱附表征了催化剂的物化性质.结果表明:在硅溶胶与盐酸胍质量比为0.7时制得的meso-g-CN_0.7具有较大的比表面积(166 m~2/g)、孔径(14.2 nm)、孔容(0.62 cm~3/g)及丰富的表面碱性位,因而显示出最好的亚甲基蓝吸附除去性能.该材料对亚甲基蓝的吸附容量达1.2′10~(-4) mol/g,为传统吸附剂如活性炭的4倍、介孔硅SBA-15的1倍,并能够循环使用至少5次而保持吸附除去率基本不变,说明meso-g-CN是一类非常有前景的、用于吸附消除有机染料的吸附剂.  相似文献   

7.
C/粉煤灰复合吸附材料的制备及表征   总被引:1,自引:0,他引:1  
以粉煤灰和蔗糖为原料,浓硫酸为炭化剂,制备了一种新型的C/粉煤灰复合吸附材料。 采用X光电子能谱、红外吸收光谱、场发射扫描电子显微镜、X射线衍射及N2气吸附实验对所制备复合材料进行了表征。 结果表明,粉煤灰表面被类石墨态炭纳米颗粒所包裹,复合材料表面密集分布着大量的介孔,Brunauer-Emmett-Teller(BET)比表面积SBET=5.4 m2/g,并且在该复合材料表面含有丰富的-SO3H、-COOH和-OH等含氧官能团。 考察了所制备的复合材料对典型阳离子型染料亚甲基蓝及重金属离子的吸附能力,结果表明,该复合材料具有优异的吸附性能,其对亚甲基蓝的吸附能力达到活性炭的83.7%,对典型重金属离子的吸附能力优于市售活性炭。 所制备复合材料可作为活性炭的一种替代品,用于水中有机染料和重金属离子的吸附处理。  相似文献   

8.
通过水热法在室温下合成了不同铜含量的介孔SiO2微球(Cu-MSM)。目的在于研究吸附剂量、MB的初始浓度以及吸附时间对Cu-MSM从溶液中移除亚甲基蓝(MB)吸附性能的影响。结果表明,当增加Cu-MSM的量时,MB的去除率会大大提高;掺杂铜的介孔SiO2微球可以通过吸附去除水溶液中的亚甲蓝。最后,简要探讨了亚甲基蓝的吸附机理。  相似文献   

9.
有序介孔炭的合成及液相有机大分子吸附性能研究   总被引:3,自引:0,他引:3  
分别采用有序介孔氧化硅SBA-15和NaY分子筛为硬模板合成了系列有序介孔炭OMC和微孔炭CFY. N2静态吸附测试表明, 所合成的介孔炭具有丰富的介孔结构和集中的介孔分布. 以亚甲基蓝为探针分子, 研究其在有序介孔炭OMC和微孔炭CFY上的吸附行为. 研究结果表明, 有序介孔炭中大于3.5 nm的大介孔孔容是决定亚甲基蓝吸附容量和吸附速率的关键因素. 吸附动力学理论研究表明, 准二级动力学方程可以很好地描述亚甲基蓝分子在介孔炭上吸附动力学行为.  相似文献   

10.
以介孔γ-Al2O3为载体,通过化学沉积与光还原法制备了Ag-AgBr/Al2O3等离子体诱导可见光催化材料。采用SEM、TEM、XRD及UV-Vis吸收光谱对复合材料进行结构与性能表征,并通过降解亚甲基蓝溶液对其光催化性能进行考察。研究结果表明,在可见光下照射1 h,催化材料对5 mg/L亚甲基蓝溶液的降解率达95%以上,总有机碳去除率为70%。由于表面金属的等离子体共振效应和介孔材料的吸附性能,催化剂具有很高的可见光催化活性和良好的稳定性,在开发新型等离子体诱导可见光催化剂方面应用前景广阔。  相似文献   

11.
以粮食副产物——稻壳为原料,采用化学活化法制成了微介孔共存的孔隙发达的稻壳基活性炭,此稻壳基活性炭对亚甲基蓝的吸附量可以达到464.8 mg·g-1。通过大量亚甲基蓝吸附实验结果拟合,发现其吸附平衡过程符合Freundlich吸附模型,动力学模型符合准二级吸附动力学模型。通过吸附平衡模型与动力学模型的建立,为此活性炭的实际应用提供理论预测模板。  相似文献   

12.
采用低温-烧结法,以碳纳米管(CNTs)为基本骨架,聚甲基丙烯酸甲酯(PMMA)微球为造孔剂,制备了一种孔径可调的三维全碳多孔结构(ACPs);利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射分析(XRD)、拉曼光谱(Raman)、比表面积及孔结构分析等对ACPs的形貌、组成、结构及比表面积进行了表征;考察了ACPs对模拟污染物亚甲基蓝的吸附效果.结果表明,该ACPs为内部含有大孔、介孔及微孔的三维连通孔隙结构,具有较大的比表面积.ACPs对亚甲基蓝的吸附过程符合伪二级动力学模型,对亚甲基蓝的平衡吸附量qe与亚甲基蓝溶液的平衡浓度ce的关系满足Langmuir等温吸附模型,由Langmuir模型计算得到ACPs对亚甲基蓝的最大吸附容量为151.3 mg/g.  相似文献   

13.
以糠醛渣为原料、KOH为活化剂,采用两步活化法制备了活性炭。考察了活化温度、活化时间、碱炭比和浸渍时间对活性炭孔结构及吸附性能的影响。采用低温N2吸附、BET、BJH及DFT理论对活性炭孔结构进行了表征分析,利用傅里叶变换红外-拉曼光谱仪检测其表面官能团,分别使用扫描电镜和X射线衍射对其进行表观形貌观察和晶型分析。结果表明,制备活性炭的最佳工艺条件为:活化温度800℃、活化时间3h、碱炭比3∶1、浸渍时间12h。所制备的糠醛渣活性炭的吸附孔径分布集中,吸附孔容为0.8825cm2/g,DFT总比表面积为3290.5m2/g,其碘吸附值和亚甲基蓝吸附值分别为2107.32mg/g和39.67mL/0.1g。  相似文献   

14.
以糠醛渣为原料、KOH为活化剂,采用两步活化法制备了活性炭。考察了活化温度、活化时间、碱炭比和浸渍时间对活性炭孔结构及吸附性能的影响。采用低温N2吸附、BET、BJH及DFT理论对活性炭孔结构进行了表征分析,利用傅里叶变换红外-拉曼光谱仪检测其表面官能团,分别使用扫描电镜和X射线衍射对其进行表观形貌观察和晶型分析。结果表明,制备活性炭的最佳工艺条件为:活化温度800℃、活化时间3h、碱炭比3∶1、浸渍时间12h。所制备的糠醛渣活性炭的吸附孔径分布集中,吸附孔容为0.8825cm2/g,DFT总比表面积为3290.5m2/g,其碘吸附值和亚甲基蓝吸附值分别为2107.32mg/g和39.67mL/0.1g。  相似文献   

15.
溶液吸附法测定活性炭比表面积是大学本科基础物理化学实验中一个较重要的实验.亚甲基蓝在活性炭表面的吸附符合Langmuir单分子层吸附,但按照实验教科书及文献介绍的溶液吸附法测定活性炭比表面积的方法,大量学生实验的测定结果比活性炭实际比表面积偏低很多.本文以BET表面吸附装置测定活性炭比表面积,再以溶液吸附法测定了亚甲基蓝在活性炭表面的最大吸附量Γ∞,计算了亚甲基蓝在活性炭表面吸附投影面积σA.结果表明亚甲基蓝在活性炭表面可能不是端基吸附,而是平面吸附,分子的投影面积σA应为1.35×10-18 m2.  相似文献   

16.
微波辐射紫茎泽兰制备优质活性炭的研究   总被引:4,自引:0,他引:4  
以紫茎泽兰为原料,碳酸钾为活化剂,采用超声波浸渍,微波辐射法制备活性炭.研究了浸渍方式与时间、微波功率、微波辐射时间、剂料比对活性炭吸附性能和得率的影响.得到了本实验条件下的优化工艺条件:超声波浸渍20min、120℃脱水2h,微波功率700W、微波辐射时间12min、剂料比1.25∶1.优化工艺条件下制备的活性炭碘吸附值为1470.27mg/g,亚甲基蓝吸附值为300mL/g,得率为16.35%.浸渍时间极大的缩短,微波辐射时间只有传统法活化时间的1/15左右,活性炭的吸附指标超过了国标GB/T 13803.1-1999和GB/T 13803.2-1999一级品的标准,其中碘吸附值是国家一级标准的1.47倍,亚甲基蓝吸附值是国家一级标准的2.73倍.同时,测定了该活性炭氮吸附,其BET比表面积为1540.97m2/g,总孔容为0.7393mL/g,并通过DFT表征了活性炭的孔径分布,结果表明该活性炭为微孔型活性炭.  相似文献   

17.
分别采用去离子水、3%尿素水溶液和3%糠醇-乙醇溶液作为溶剂,通过溶胶凝胶及溶剂热过程制备了TiO_2/SiO_2复合材料。对不同溶剂条件下得到的TiO_2/SiO_2进行X射线衍射(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)、N_2吸附-脱附和比表面积分析测试。结果表明:用去离子水作为水热溶剂制备的TiO_2/SiO_2材料为孔径分布较窄的介孔材料,其材料是由锐钛矿相TiO_2组成,颗粒表面粗糙,疏松多孔,比表面积最大,该材料在实验条件下可降解约90%的亚甲基蓝,且光降解亚甲基蓝的速率常数最大为0.04708 min~(-1)。光催化过程产生的·OH是降解亚甲基蓝最主要的活性物种。  相似文献   

18.
水蒸气活化制备烟杆基颗粒活性炭的研究   总被引:1,自引:0,他引:1  
以烟杆废弃物为原料,以木焦油为主的复合粘结剂,通过水蒸气活化制备了烟杆基颗粒活性炭.对影响颗粒活性炭吸附性能和收率的因素如活化温度、活化时间、水蒸气流量进行了系统研究,得到了最佳工艺条件:活化温度为900℃,活化时间为60 min,水蒸气流量为3.31 g/min.该工艺条件下,烟杆基颗粒活性炭对碘的吸附值为1028 mg/g,对亚甲基蓝的吸附值为285 mg/g,收率为24.39%.同时,测定了该活性炭氮吸附,通过BET计算了活性炭的比表面积,并通过密度函数理论(DFT)表征了活性炭的孔结构.结果表明,该活性炭为微孔型,BET比表面积为1073 m2/g,总孔容为0.8152 ml/g.  相似文献   

19.
采用吸附法处理染料废水需要合适的吸附剂。利用溶剂蒸发自组装法,以甲阶酚醛树脂为碳源、介孔SiO2粉体为载体制备介孔C/SiO2粉体,表征所制C/SiO2粉体的结构,研究C/SiO2粉体对阳离子型染料亚甲基蓝和阳离子红X-GRL的吸附性能,并与相同条件下制备的非负载的多孔C粉体以及介孔SiO2载体进行比较。结果表明,介孔C/SiO2粉体的孔窗口为11~18 nm,比表面积为303 m2.g-1,比孔容为1.11 cm3.g-1;C/SiO2粉体对这两种染料吸附量均高于C粉体和SiO2载体;在pH≤10的范围内,吸附量随pH值增大而显著提高。  相似文献   

20.
高吸附性能油焦活性炭的制备和性能研究   总被引:8,自引:0,他引:8  
用油焦为原料,在高温下加入适量活化剂进行活化制备活性炭,通过测定其BET比表面积和亚甲基蓝脱色能力,选出最佳活化剂。研究了活化温度、活化时间以及活化剂用量对BET比表面积和亚甲基蓝脱色能力的影响,得到活化的最佳工艺过程:活化温度为800℃、活化时间为1h以及活化剂用量为1:1。用双柱定容容量法测定了本实验制备的活性炭对甲烷的吸附量,与常用活性炭比较,是其吸附量的5倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号