首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Titania supported gold nanoparticles as photocatalyst   总被引:1,自引:0,他引:1  
This Perspective is focused on the photocatalytic activity of gold nanoparticles supported on titania (Au/TiO(2)). Titania is the most widely used photocatalyst, but its limited activity under visible light irradiation has motivated the quest for modified titania materials absorbing visible light. The review starts by justifying how doping with metallic elements is a related strategy, but different, to that leading to the use of Au/TiO(2) in photocatalysis. Data supporting and confirming the photoactivity of gold nanoparticles in colloidal solutions are briefly presented to justify the possibility of gold photosensitization of titania by electron injection into the conduction band. After describing the most common procedures used to prepare Au/TiO(2), the central part of this article is focused on the photocatalytic activity reported for Au/TiO(2) for hydrogen generation, dye decoloration, phenol decomposition and carboxylic acid degradation, among other processes. Emphasis is given to the role that parameters like Au loading, particle size, surface area, spatial structuring and others play on the photocatalytic activity. One important issue has been to distinguish those reports using visible light from those other in which direct titania excitation by UV light has been used. These Au/TiO(2) photocatalysts can find real applications in the near future for environmental remediation and for hydrogen generation.  相似文献   

2.
Visible-light irradiation (λ > 450 nm) of gold nanoparticles loaded on a mixture of anatase/rutile TiO(2) particles (Degussa, P25) promotes efficient aerobic oxidation at room temperature. The photocatalytic activity critically depends on the catalyst architecture: Au particles with <5 nm diameter located at the interface of anatase/rutile TiO(2) particles behave as the active sites for reaction. This photocatalysis is promoted via plasmon activation of the Au particles by visible light followed by consecutive electron transfer in the Au/rutile/anatase contact site. The activated Au particles transfer their conduction electrons to rutile and then to adjacent anatase TiO(2). This catalyzes the oxidation of substrates by the positively charged Au particles along with reduction of O(2) by the conduction band electrons on the surface of anatase TiO(2). This plasmonic photocatalysis is successfully promoted by sunlight exposure and enables efficient and selective aerobic oxidation of alcohols at ambient temperature.  相似文献   

3.
Colloidal gold (Au) nanoparticles were prepared and successfully loaded on titanium(IV) oxide (TiO(2)) without change in the original particle size using a method of colloid photodeposition operated in the presence of a hole scavenger (CPH). The prepared Au nanoparticles supported on TiO(2) showed strong photoabsorption at around 550 nm due to surface plasmon resonance (SPR) of Au and exhibited a photocatalytic activity in mineralization of formic acid in aqueous suspensions under irradiation of visible light (>ca. 520 nm). A linear correlation between photocatalytic activity and the amount of Au loaded, that is, the number of Au nanoparticles, was observed, indicating that the activity of Au/TiO(2) plasmonic photocatalysts can be controlled simply by the amount of Au loading using the CPH method and that the external surface area of Au nanoparticles is a decisive factor in mineralization of formic acid under visible light irradiation. Very high reaction rates were obtained in samples with 5 wt % Au or more, although the rate tended to be saturated. The CPH method can be widely applied for loading of Au nanoparticles on various TiO(2) supports without change in the original size independent of the TiO(2) phase. The rate of CO(2) formation also increased linearly with increase in the external surface area of Au. Interestingly, the TiO(2) supports showed different slopes of the plots. The slope is important for selection of TiO(2) as a material supporting colloidal Au nanoparticles.  相似文献   

4.
N-doping of titania makes photocatalytic activity possible for the splitting of water, and other reactions, under visible light. Here, we show from both theory and experiment that Au preadsorption on TiO2 surfaces significantly increases the reachable amount of N implanted in the oxide. The stabilization of the embedded N is due to an electron transfer from the Au 6s levels toward the N 2p levels, which also increases the Au-surface adhesion energy. Theoretical calculations predict that Au can also stabilize embedded N in other metal oxides with photocatalytic activity, such as SrTiO3 and ZnO, producing new states above the valence band or below the conduction band of the oxide. In experiments, the Au/TiN(x)O(2-y) system was found to be more active for the dissociation of water than TiO2, Au/TiO2, or TiO(2-y). Furthermore, the Au/TiN(x)O(2-y) surfaces were able to catalyze the production of hydrogen through the water-gas shift reaction (WGS) at elevated temperatures (575-625 K), displaying a catalytic activity superior to that of pure copper (the most active metal catalysts for the WGS) or Cu nanoparticles supported on ZnO.  相似文献   

5.
微乳法合成纳米SiO2/TiO2及其光催化性能   总被引:1,自引:0,他引:1  
采用聚乙二醇辛基苯基醚(Triton X-100)/正己醇/环己烷/氨水微乳体系合成了纳米TiO2和SiO2/TiO2复合物,用X射线衍射、红外光谱和透射电镜对其结构进行了表征,并以甲基橙降解评价了其光催化性能,讨论了SiO2/TiO2摩尔比、晶相组成及粒径与光催化活性的关系.结果表明,SiO2/TiO2催化剂中形成了新的Ti-O-Si键和无定形SiO2;在纳米TiO2中复合SiO2能有效抑制锐钛矿向金红石的转变,增加锐钛矿的稳定性,并阻止TiO2晶粒的聚集生长.催化剂的光催化活性随金红石含量的增加而降低,加入适量SiO2能明显提高TiO2的光催化活性,其中摩尔比为1/7的SiO2/TiO2光催化活性最高.  相似文献   

6.
This paper deals with the textural, microstructural and interfacial properties of Au/TiO(2) nanocomposites, in relation to their photocatalytic activity for splitting of water. TiO(2) samples of two different morphologies were employed for dispersing different cocatalysts, such as: Au, Pt, Ag or Cu, for the sake of comparison. The samples were characterized using powder XRD, XPS, UV-visible, thermoluminescence, SEM, HRTEM and SAED techniques. Compared to other metal/TiO(2) photocatalysts, Au/TiO(2) with an optimum gold loading of 1 wt% was found to exhibit considerably higher activity for visible light induced production of H(2) from splitting water in the presence of methanol. Further, the sol-gel prepared TiO(2) (s.TiO(2)), having spherical grains of 10-15 nm size, displayed better photoactivity than a Degussa P25 catalyst. The electron microscopy investigations on s.TiO(2) revealed significant heterogeneity in grain morphology of individual TiO(2) particles, exposure of the lattice planes, metal dispersion, and the interfacial metal/TiO(2) contacts. The gold particles were found to be in a better dispersed state. O(2) TPD experiments revealed that the gold nanoparticles and Au/TiO(2) interfaces may serve as distinct binding sites for adsorbate molecules. At the same time, our thermoluminescence measurements provide an insight into Au-induced new defect states that may facilitate the semiconductor-to-metal charge transfer transition. In conclusion, the superior photocatalytic activity of Au/TiO(2) may relate to the grain morphology of TiO(2), dispersion of gold particles, and the peculiar architecture of metal/oxide heterojunctions; giving rise in turn to augmented adsorption of reactant molecules and their interaction with the photo-generated e(-)/h(+) pair. The role played by methanol as a sacrificial reagent in photocatalytic splitting of water is discussed.  相似文献   

7.
以纳米管钛酸为前驱体,采用水热法先制备得到新型N掺杂二氧化钛,然后用沉积沉淀法在N掺杂二氧化钛表面负载微量贵金属Au,制备得到负载Au的掺N二氧化钛.利用TEM、XRD、XPS、ESR和DRS等手段研究了样品的形貌、晶体结构、元素化学态和光谱吸收性质.样品光催化活性通过可见光催化降解丙烯进行评价,结果表明,样品N-TiO2和Au/N-TiO2具有明显的可见光(λ≥420 nm)催化活性.ESR结果表明,掺氮过程中生成的束缚单电子的氧空位是样品具有可见光响应的原因.  相似文献   

8.
Well-crystallized iron(III)-doped TiO2 nanopowders with controlled Fe3+ doping concentration and uniform dopant distribution, have been synthesized with plasma oxidative pyrolysis. The photocatalytic reactivity of the synthesized TiO2 nanopowders with a mean particle size of 50-70 nm was quantified in terms of the degradation rates of methyl orange (MO) in aqueous TiO2 suspension under UV (mainly 365 and 316 nm) and visible light irradiation (mainly 405 and 436 nm). The photodecomposition of MO over TiO2 nanopowders followed a distinct two-stage pseudo first order kinetics. Interestingly, the photocatalytic reactivity depends not only on the iron doping concentration but also on the wavelength of the irradiating light. Under UV irradiation, nominally undoped TiO2 had much higher reactivity than Fe3+ -doped TiO2, suggesting that Fe3+ doping (> 0.05 at. %) in TiO2 with a mean particle size of approximately 60 nm was detrimental to the photocatalytic decomposition of methyl orange. Whereas, under visible light irradiation, the Fe3+ -doped TiO2 with an intermediate iron doping concentration of approximately 1 at. % had the highest photocatalytic reactivity due to the narrowing of band gap so that it could effectively absorb the light with longer wavelength. A strategy for improving the photocatalytic reactivity of Fe3+ -doped TiO2 used in the visible light region is also proposed.  相似文献   

9.
水中硝基酚的纳米TiO_2光催化降解   总被引:21,自引:0,他引:21       下载免费PDF全文
以主波长254nm的紫外灯作为光源,研究了锐钛型纳米TiO2对邻硝基苯酚、2,4-二硝基苯酚的光催化降解行为,并与普通TiO2作了对比;结果表明,纳米TiO2表现出很高的光催化活性,催化降解过程符合一级动力学规律。  相似文献   

10.
Gamma-Al2O3, ZrO2, and TiO2 gold supported model catalysts have been synthesized by laser vaporization. Structural characterization using Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy experiments have shown that the gold clusters deposited on the different supports have similar distribution of size centered around 3 nm and are in the metallic state. However, X-ray photoemission measurements also indicate lower binding energies than the usual Au 4f(7/2) at 84.0 eV for both alumina and titania supported catalysts, indicating a modification of the electronic structure of the metal. One has taken benefit of these features to study the influence of the nature of the support toward CO oxidation activities without being hindered by particle size or gold oxidic species effects. By comparing the activities of the different catalysts, it is concluded that the nature of the support directly affects the activity of gold. The following tendency is observed: titania and zirconia are superior to alumina as supports, titania being slightly better than zirconia. From XPS and activity results we can conclude that the existence of negatively charged clusters is not the key point to explain the high activity observed for Au/ZrO2 and Au/TiO2 catalysts and also that metallic Au is the major catalytically active phase. Hence, due to their very nature, titania and to a less extent zirconia should participate to the catalytic process.  相似文献   

11.
A simple route has been developed for the synthesis of europium, nitrogen-codoped titania photocatalysts under mild conditions (i.e., low temperature, < or = 348 K, and ambient pressure). The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectra (DRS) analyses. The results showed that the codoped photocatalyst with a spheroidal shape exhibited a smaller size than the undoped titania. The transformation from anatase to rutile was suppressed by doping with Eu and N atoms. Furthermore, the absorbance spectra of Eu, N-codoped TiO(2) exhibited a significant red shift to the visible region. The photocatalytic activity of Eu, N-codoped TiO(2) was evaluated by photodegradation of the dye reactive brilliant red X-3B under visible light. This codoped sample exhibited enhanced photocatalytic activity compared to N-doped TiO(2), pure TiO(2), and P25.  相似文献   

12.
微乳法制备纳米TiO2 /SiO2的结构及光催化研究   总被引:1,自引:0,他引:1  
Nanosized TiO2 and TiO2/SiO2 particles were prepared by hydrolysis of tetrabutyl titanate (TBOT) and tetraethyl orthosilicate (TEOS) in the TX-100 reverse microemulsion. These particles were characterized by TG-DSC, XRD, FTIR, TEM,N2 adsorption-desorption. Their photocatalytic activity was tested by degradation of methyl orange. The result shows that TiO2/SiO2 nanoparticles are with a monodispersed spherical phase and a uniform size distribution,and TiO2 particles are dispersed on the surface of SiO2. The band for Ti-O-Si vibration in FTIR was observed, the Ti-O-Si bond increased the stability of anatase TiO2, suppressed the phase transformation of titania from anatase to rutile. And due to the addition of SiO2, the average size of titania decreased from 38 nm in pure TiO2 to 5 nm in TiO2/SiO2. It was found, under UV light irradiation, TiO2/SiO2 particles showed higher activity than pure TiO2, and TiO2/SiO2(1/1) particles showed the highest photocatalytic activity on the photocatalytic decomposition of methyl orange, which was influenced by crystal structure, particle size, crystallinity and Surface area Characteristics.  相似文献   

13.
以钛酸丁酯和葡萄糖为原料用水热法制备了碳掺杂二氧化钛,再进一步对其进行Ag@AgCl表面修饰.用X射线衍射(XRD),X射线光电子能谱(XPS),透射电镜(TEM),BET比表面仪和紫外-可见(UV-Vis)漫反射光谱等手段对样品进行测试表征;在可见光辐射下(λ>420 nm),以甲基橙和苯酚溶液的光催化降解实验来评价样品的活性.结果表明:经Ag@AgCl修饰后,样品的粒径增大,比表面积减小,对可见光的响应增强;可见光光催化效率有大幅度提高,对甲基橙和苯酚的降解效率分别是修饰前的5.5和3.4倍,且光催化剂经三次循环使用后活性基本保持不变.  相似文献   

14.
Photocatalytic hydrogen production over CuO-modified titania   总被引:2,自引:0,他引:2  
Efficient hydrogen production and decomposition of glycerol were achieved on CuO-modified titania (CuO-TiO(2)) photocatalysts in glycerol aqueous solutions. CuO clusters were deposited on the titania surface by impregnation of Degussa P25 TiO(2) powder (P25) with copper nitrate followed by calcination. The resulting CuO-TiO(2) composite photocatalysts were characterized by X-ray diffraction (XRD), UV-visible spectrophotometry, X-ray photoelectron spectroscopy (XPS), N(2) adsorption-desorption, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The low-power ultraviolet light emitting diodes (UV-LED) were used as the light source for photocatalytic H(2)-production reaction. A detailed study of CuO effect on the photocatalytic H(2)-production rates showed that CuO clusters can act as an effective co-catalyst enhancing photocatalytic activity of TiO(2). The optimal CuO content was found to be 1.3 wt.%, giving H(2)-production rate of 2061 μmolh(-1)g(-1) (corresponding to the apparent quantum efficiency (QE) of 13.4% at 365 nm), which exceeded the rate of pure TiO(2) by more than 129 times. The quantum size effect of CuO clusters is deemed to alter its energy levels of the conduction and valence band edges in the CuO-TiO(2) semiconductor systems, which favors the electron transfer and enhances the photocatalytic activity. This work shows not only the possibility of using CuO clusters as a substitute for noble metals in the photocatalytic H(2)-production but also demonstrates a new way for enhancing hydrogen production activity by quantum size effect.  相似文献   

15.
Facile and effective approaches were developed to fabricate 3D-ordered films of titania hollow spheres with different sphere diameters. The shell thickness of the sphere was adjusted in the range of 20-40 nm by changing the casting cycle of the titania precursor. The photonic stop band was observed for the 3D-ordered film and was tunable by the sphere diameter and the shell thickness. The stop band shifted from 930 to 547 nm. Crystal violet dye adsorbed on the film exhibited more than two times higher absorbance than that on a reference film of a flat titania layer, probably due to the red edge effect of the stop band and/or to the multiple scattering effect. The enhanced absorbance led to more efficient photodegradation of the dye under visible light and under solar light irradiation. A maximum photocatalytic enhancement of 22% is achieved. Finally, the influence of TiO2 morphology on photocatalytic activity was discussed. Compared with flat titania films, the existence of ordered macropores in titania spheres causes the stop band and a longer optical path due to multiple scattering. Both the red edge of the stop band and multiple scattering effects enhance the absorption of the dye, which results in the photocatalytic enhancement.  相似文献   

16.
李晓辉  刘守新 《物理化学学报》2008,24(11):2019-2024
采用酸催化水解法由TiCl4、NH4F混合液合成N、F共掺杂可见光响应TiO2光催化剂(TONF). 以苯酚为模型物, 考察了催化剂在可见光区、紫外光区的催化活性. 采用X射线光电子能谱(XPS)、紫外-可见漫反射光谱(DRS)、X射线衍射(XRD)、扫描电子显微镜(SEM)及低温氮物理吸附对光催化剂的晶相结构、光谱特征和表面结构等进行表征. 结果表明, 适量的N、F共掺杂TONF催化剂表现出较高的可见光催化活性. N、F共掺杂可显著提高TiO2分散性能, 促进锐钛矿相的形成, 抑制其向金红石相转变, 提高相转变温度. N掺杂可提高TiO2在可见光区的吸收; F掺杂可使TiO2能隙变窄.  相似文献   

17.
In order to develop photoactive cobalt-doped TiO2 for the degradation of organic pollutants using visible light irradiation, the effects of cobalt precursor on TiO2 microstructure were investigated. Three cobaltprecursors, i.e. CoCl2, Co(NO3)2 and CoSO4 with two doping levels (nominally 1% and 10%), and two annealing temperatures (400 and 800 ℃) were adopted to prepare the doped titania through the sol-gel method. The powder samples were characterized with XRD, SEM, BET surface area analysis and UV-Vis absorption spectroscopy, and their photocatalytic activities were evaluated by the degradation of aniline under visible light irradiation. The results showed that the distribution of titania phases, particle size,morphology, surface area and the optical absorption of the catalysts were greatly dependent on the cobalt precursors. Samples prepared from Co(NO3)2, especially for those doped at 1% and calcined at 400 ℃,showed the highest photocatalytic activity towards the degradation of aniline, and the possible reasons are discussed briefly.  相似文献   

18.
Plasmon-induced photoelectrochemistry in the visible region was studied at gold nanoparticle-nanoporous TiO(2) composites (Au-TiO(2)) prepared by photocatalytic deposition of gold in a porous TiO(2) film. Photoaction spectra for both the open-circuit potential and short-circuit current were in good agreement with the absorption spectrum of the gold nanoparticles in the TiO(2) film. The gold nanoparticles are photoexcited due to plasmon resonance, and charge separation is accomplished by the transfer of photoexcited electrons from the gold particle to the TiO(2) conduction band and the simultaneous transfer of compensative electrons from a donor in the solution to the gold particle. Besides its low-cost and facile preparation, a photovoltaic cell with the optimized electron mediator (Fe(2+/3+)) exhibits an optimum incident photon to current conversion efficiency (IPCE) of 26%. The Au-TiO(2) can photocatalytically oxidize ethanol and methanol at the expense of oxygen reduction under visible light; it is potentially applicable to a new class of photocatalysts and photovoltaic fuel cells.  相似文献   

19.
以Au(S2O3)3-2为金前驱体, 分别采用水洗(W)和旋蒸(E)工艺制备了Au/TiO2催化剂. 用UV-Vis漫反射光谱(DRS)、X 射线衍射(XRD)、透射电子显微镜(TEM)和原子吸收光谱(AAS)对制备的催化剂样品进行了表征, 通过光催化降解甲基橙对催化剂光催化活性进行了评价. 结果表明, 通过水洗处理, 催化剂样品表面形成了具有较好分散性的金纳米粒子(2-5 nm), 而旋蒸工艺制备的样品表面形成一层金的包覆结构. Au/TiO2催化剂的光催化活性与制备工艺密切相关. 在相似的金负载量下, 水洗法制备的样品比旋蒸法制备的样品具有更高的光催化活性.  相似文献   

20.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号