首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
褚道葆  李艳  宋奇  周莹 《物理化学学报》2011,27(8):1863-1867
以富含植物蛋白的豆浆作为碳源, 以FePO4·4H2O和LiOH·H2O为原料, 采用流变相方法合成了锂离子电池正极材料LiFePO4/C. X射线衍射(XRD)和扫描电子显微镜(SEM)的表征结果显示, 样品具有良好的结晶性能, 平均粒径约200 nm, 颗粒表面有均匀网络状的碳包覆. 充放电循环研究结果表明: LiFePO4/C具有稳定的电化学循环性能, LiFePO4/C正极材料在0.1C倍率下首次放电比容量达到156 mAh·g-1, 首次充放电效率达到98.7%; 循环40次后, 放电比容量为149 mAh·g-1, 电池容量保持率在95%以上, 1C倍率下首次放电比容量达到134.7 mAh·g-1, 显示出较高的电化学容量和优良的循环稳定性.  相似文献   

2.
纺锤体形LiFePO4锂离子电池正极材料的制备与性能   总被引:2,自引:0,他引:2  
采用低温溶剂热法合成了LiFePO4, 并通过热处理方法制备出LiFePO4/C锂离子电池复合正极材料. 利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱以及恒电流充放电测试等方法对样品进行结构表征和充放电性能测试. 结果表明: 采用丙三醇(甘油)为溶剂, 低温条件下(120 °C)合成的LiFePO4具有橄榄石型晶体结构, 呈纺锤体形貌, 且具有粒径分布均匀的特点. 热处理后制备的LiFePO4/C复合正极材料仍呈纺锤体形貌, 且表现出了优良的充放电性能. 室温下以0.1C倍率恒流充放电, LiFePO4/C的首次放电比容量达到147.2 mAh·g-1, 50次循环后放电比容量仍然保持在136.3 mAh·g-1. 当倍率为0.2C、0.5C和1C时, 样品的平均放电比容量分别在130、120和108 mAh·g-1左右.  相似文献   

3.
不同碳源对LiFePO4/C复合正极材料性能的影响   总被引:6,自引:1,他引:6  
唐致远  阮艳莉 《化学学报》2005,63(16):1500-1504
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4/C复合正极材料. 采用XRD, SEM和激光粒度分布(LSD)以及电化学测试等手段对目标材料进行了结构表征和性能测试. 考察了葡萄糖、乙炔黑以及石墨等不同碳源对目标材料性能的影响. 结果表明, 以葡萄糖作为碳源的正极材料具有优良的电化学性能, 首次放电比容量达142.5 mAh/g, 循环30次后, 容量衰减只有2.5%. 分析了不同碳源对目标材料性能影响的原因.  相似文献   

4.
采用喷雾干燥-高温固相法制备纳米LiFePO4与LiFePO4/C正极材料,用X-射线衍射,扫描电镜等对合成材料进行了表征,并对以LiFePO4为正极的电池进行了电化学性能测试。结果表明:材料合成最佳煅烧温度为600 ℃;合成过程中由于碳对LiFePO4晶型的生长有一定的抑制作用,相对于纯LiFePO4材料,LiFePO4/C材料粒径更小;并且,在此最佳合成温度下合成的LiF  相似文献   

5.
石墨烯掺杂LiFePO4电极材料的合成及其电化学性能   总被引:2,自引:0,他引:2  
采用水热辅助法合成石墨烯改性的LiFePO4多孔微球电极材料.并对材料进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),傅里叶变换红外(FT-IR)光谱,充放电等表征.从结果可以看出在2 mol·L-1LiNO3电解液体系中单纯包碳的LiFePO4微球在1C、50C倍率时的比容量分别为137、64 mAh·g-1,而石墨烯改性的LiFePO4微球的比容量分别为141、105 mAh·g-1,表现出较好的倍率特性.恒流循环充放电测试60次后两种材料容量保持率分别为70.2%、83.7%.说明掺杂石墨烯构成的三维导电网络能明显改善LiFePO4的电化学性能.  相似文献   

6.
LiFePO4的合成及其热分析动力学   总被引:3,自引:0,他引:3  
在惰性气氛下, 以Li2CO3、FeC2O4·2H2O和NH4H2PO4为原料, 用高温固相方法合成了橄榄石型LiFePO4材料. 利用不同升温速率的热重及差热分析研究了固相合成LiFePO4的反应动力学. 研究表明, LiFePO4的高温固相合成过程可分为三个步骤, 利用Doyle-Ozawa法和Kissinger法分别计算了各个反应阶段的表观活化能. 用Kissinger法确定每个反应阶段的反应级数和频率因子, 并给出了各个阶段的动力学方程. 根据动力学研究的结果, 采用优化的固相 分段法合成了碳包覆改性的LiFePO4正极材料. 利用X射线衍射、扫描电镜及恒流充放电对材料进行了物性表征及性能测试. 结果表明, 该材料具有单一的橄榄石结构, 颗粒尺寸细小均匀, 0.1C倍率放电时表现出良好的电化学性能.  相似文献   

7.
以LiH2PO4和还原铁粉为原料,通过机械液相活化法获得了棒状形貌的[Fe3(PO4)2·8H2O+Li3PO4]前驱体,然后在三甘醇(TEG)介质中采用多元醇工艺制备了LiFePO4材料.为提高其电导率,以聚乙烯醇(PVA)为碳源,对纯相LiFePO4进行碳包覆改性.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒电流充放电和电化学阻抗谱(EIS)等测试方法对制备的材料进行了表征.结果表明:采用机械活化辅助多元醇法可在低温下合成结晶良好的LiFePO4,碳包覆改性的LiFePO4/C材料导电性能得到改善,电荷转移阻抗减小,1C、2C倍率下放电容比量分别为139.8、129.5mAh·g-1,具有良好的倍率性能和循环稳定性.  相似文献   

8.
以可溶性三价铁盐FeCl3为铁源,Fe粉作还原剂,应用水热还原法合成LiFePO4.XRD、红外光谱及SEM形貌表征表明,在水热条件下,铁粉能完全将三价铁还原为二价铁,得到单一相LiFePO4,且其颗粒团聚形成花簇状;而LiFePO4经过葡萄糖的热解包覆碳生成LiFePO4/C后,颗粒转变似球状.电化学性能测试结果表明,虽然单相LiFePO4的放电容量很低,但LiFePO4/C却表现出良好的倍率性能和循环稳定性.  相似文献   

9.
Nb 掺杂LiFePO4/C 的一步固相合成及电化学性能   总被引:1,自引:0,他引:1  
用固相法一步合成了Nb掺杂的LiFePO4/C复合材料, 研究了Nb掺杂量对材料电化学性能的影响. 结果表明, Nb掺杂后LiFePO4/C复合材料的电化学性能明显提高. 在0.5C、1C和2C充放电倍率下, 名义成分为Li0.96Nb0.008FePO4/C正极材料的比容量分别为161、148和132 mAh•g−1, 已达到实用化水平. 阻抗谱和循环伏安特性测试显示, Nb掺杂有效地降低了复合材料电极的阻抗和极化, 说明Nb掺杂的主要作用是提高了LiFePO4的电子电导率.  相似文献   

10.
The LiFePO4 nanotubes were successfully fabricated by a sol-gel method with porous anodic aluminum oxide as the template. Transmission electron microscopy and scanning electron microscopy showed that the synthe- sized LiFePO4 nanotubes were monodispersed and parallel to one another. Selected area electron diffraction pattern, X-ray diffraction and X-ray photoelectron spectroscopy investigations jointly demonstrated that the synthesized LiFePO4 nanotubes were pure olivine structure. This approach offered a potentially way for fabricating ordered LiFePO4 nanotubes at room temperature and ambient conditions, which might be expected to find promising application as a new cathode material in lithium ion battery.  相似文献   

11.
<正>LiMn_2O_4 spinel cathode materials were modified with 2 wt.%Li-M-PO_4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn_2O_4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn_2O_4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.  相似文献   

12.
A composite cathode material for lithium ion battery applications, Mo-doped LiFePO(4)/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO(4)-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo(6+) doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO(4) nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO(4) particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO(4) cathodes. In particular, Mo-doped LiFePO(4)/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO(4)/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility.  相似文献   

13.
LiFePO_4新型正极材料电化学性能的研究   总被引:28,自引:2,他引:26  
施志聪  李晨  杨勇 《电化学》2003,9(1):9-14
采用固相反应结合高速球磨法,合成了锂离子电池新型正极材料LiFePO4,并对该材料进行碳包覆处理;采用XRD、SEM、元素分析以及价态化学分析等方法对样品进行表征.实验表明,LiFePO4具有3.4V的放电电压平台,而且包覆碳后的磷酸铁锂具有更好的电化学性能,首次放电容量达147mAh/g,充放电循环100次后容量只衰减9.5%.  相似文献   

14.
LiNi_(0.915)Co_(0.075)Al_(0.01)O_2(NCA) with Zr(OH)_4 coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)_4 powders, and then characterized with scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Experimental results show that amorphous Zr(OH)_4 powders have been successfully coated on the surface of spherical NCA particles, exhibiting improved electrochemical performance. 0.50 wt% Zr(OH)_4 coated NCA delivers a capacity of 197.6 mAh/g at the first cycle and 154.3 mAh/g after 100 cycles with a capacity retention of 78.1% at 1 C rate. In comparison, the pure NCA shows a capacity of 194.6 mAh/g at the first cycle and 142.5 mAh/g after 100 cycles with a capacity retention of 73.2% at 1 C rate. Electrochemical impedance spectroscopy(EIS) results show that the coated material exhibits a lower resistance, indicating that the coating layer can efficiently suppress transition metals dissolution and decrease the side reactions at the surface between the electrode and electrolyte. Therefore, surface coating with amorphous Zr(OH)_4 is a simple and useful method to enhance the electrochemical performance of NCA-based materials for the cathode of LIBs.  相似文献   

15.
商业化LiFePO_4(LFP)正极材料的导电性一直是制约其性能提高的关键。为了提高LFP的性能,利用沸石咪唑酯骨架-8(ZIF-8)制备多孔碳材料(CZIF-8)改善商业化LFP正极材料的导电性,对比了两种改性LFP的方法:1)将退火的ZIF-8以物理混合的方法与LFP混合制得LFP/CZIF-8正极材料;2)ZIF-8在LFP表面原位生长后退火制得LFP@CZIF-8正极材料。X射线粉末衍射(XRD)、氮气吸脱附(BET)和拉曼光谱等测试证明,改性后的LFP仍具有橄榄石型结构,同时出现了具有介孔结构的石墨化碳材料的特征。扫描电子显微镜(SEM)和透射电子显微镜(TEM)测试证明LFP/CZIF-8样品中LFP与CZIF-8之间未形成链接结构,而在LFP@CZIF-8样品中二者形成了核壳结构。电化学阻抗测试(EIS)表明,改性后样品的离子传输阻抗明显减小,说明两种方法均提高了LFP的导电性。充放电循环测试表明,两种改性方法均能提高LFP的循环性能和库伦效率。不同的是,倍率性能测试表明,LFP/CZIF-8样品的高倍率性能比LFP@CZIF-8样品更有优势,在10.0 C电流倍率下能够达到57.8 m A·h/g。这一研究为商业化锂离子电池电极材料的改性提供了新的思路,并且通过方法优化为产业化做了铺垫。  相似文献   

16.
徐嘉  王艳艳  王蕊  王博  潘越  曹殿学  王贵领 《电化学》2013,19(2):189-192
本文以壳聚糖单体为碳源兼凝胶剂,利用溶胶-凝胶煅烧合成了锂离子电池LiFePO4/C正极材料,使用XRD和SEM对合成的材料进行表征. 用恒电流充放电测试了LiFePO4/C电极的电化学性能,当壳聚糖单体与LiFePO4摩尔比为1:1.2时,600 oC煅烧的LiFePO4/C电极性能最佳,其粒径分布均匀(200 ~ 400 nm),该电极0.2C倍率放电比容量为155 mAh.g-1,30周期循环放电比容量仍保持152 mAh.g-1,库仑效率为97.9 %.  相似文献   

17.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

18.
以Fe(NO3)3,LiNO3,NH4H2PO4和NaNO3为原料,采用简单的液相-碳热还原法合成Li0.97Na0.03FePO4/C复合正极材料.使用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电等测试技术研究了材料的结构及倍率充放电性能.通过循环伏安(CV)曲线和电化学阻抗谱(EIS)研究电极反应过程中的动力学特点.结果表明,Na掺杂形成了具有橄榄石结构的Li0.97Na0.03FePO4固溶体,并增大了晶格中Li+一维扩散通道,使LiFePO4/C的电荷转移电阻减小了约2/3,Li+扩散系数提高了3~4倍.因此,Li0.97Na0.03FePO4/C首次放电比容量在0.1 C和2 C倍率下分别达到152 mAh g-1和109 mAh g-1,比未掺杂的LiFePO4/C的放电比容量分别提高了4.83%和62.69%.  相似文献   

19.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料, 以乙二酸为还原剂, 通过湿化学还原-低温热处理方法制备出锂离子复合正极材料xLiFePO4·yLi3V2(PO4)3. X射线衍射(XRD)结果表明, 合成的材料中橄榄石结构的LiFePO4和单斜晶系的Li3V2(PO4)3两相共存; 从复合材料中LiFePO4、Li3V2(PO4)3相对于相同条件下制备的纯相LiFePO4和Li3V2(PO4)3的晶格常数变化以及结合高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDAX)的结果可以看出, 在复合材料xLiFePO4·yLi3V2(PO4)3中存在部分V和Fe, 分别掺杂在LiFePO4和Li3V2(PO4)3中, 并形成固溶体; X射线光电子能谱(XPS)结果表明, Fe/V在复合材料中的价态与各自在LiFePO4和Li3V2(PO4)3中的价态保持一致, 分别为+2 和+3价. 充放电测试表明, 制备出的复合正极材料电化学性能明显优于单一的LiFePO4和Li3V2(PO4)3; 循环伏安测试表明, 复合正极材料具有优良的脱/嵌锂性能.  相似文献   

20.
二氟二草酸硼酸锂对LiFePO4/石墨电池高温性能的影响   总被引:2,自引:0,他引:2  
研究了二氟二草酸硼酸锂(LiODFB)作为锂盐加入到碳酸丙烯酯(PC)+碳酸乙烯酯(EC)+碳酸甲乙酯(EMC)(质量比为1:1:3)混合溶剂中对LiFePO4/石墨电池高温(60 ℃)循环性能的影响. 用线性扫描伏安法(LSV)测试了电解液的电化学窗口. 通过等离子发射光谱(ICP)和能量散射光谱(EDS)对LiFePO4材料高温条件下在不同电解液中的稳定性进行了研究; 并用扫描电镜(SEM)和电化学交流阻抗谱(EIS)分析了石墨负极表面的固体电解液相界面(SEI)膜的热稳定性. 结果表明: 一方面LiODFB基电解液能抑制LiFePO4材料在高温条件下Fe(II)的溶解, 防止溶解的Fe(II)在石墨上还原, 有效地降低电池阻抗; 另一方面, 在LiODFB基电解液中形成的石墨负极表面SEI膜具有更好的热稳定性, 能显著提高LiFePO4/石墨电池的高温循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号