首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

2.
By the combination of solid‐phase extraction as well as isotope dilution gas chromatography with mass spectrometry, a sensitive and reliable method for the determination of endocrine‐disrupting chemicals including bisphenol A, 4‐octylphenol, and 4‐nonylphenol in vegetable oils was established. The application of a silica/N‐(n‐propyl)ethylenediamine mixed solid‐phase extraction cartridge achieved relatively low matrix effects for bisphenol A, 4‐octylphenol, and 4‐nonylphenol in vegetable oils. Experiments were designed to evaluate the effects of derivatization, and the extraction parameters were optimized. The estimated limits of detection and quantification for bisphenol A, 4‐octylphenol, and 4‐nonylphenol were 0.83 and 2.5 μg/kg, respectively. In a spiked experiment in vegetable oils, the recovery of the added bisphenol A was 97.5–110.3%, recovery of the added 4‐octylphenol was 64.4–87.4%, and that of 4‐nonylphenol was 68.2–89.3%. This sensitive method was then applied to real vegetable oil samples from Zhejiang Province of China, and none of the target compounds were detected.  相似文献   

3.
Chloroanisoles, particularly 2,4,6‐trichloroanisole, are commonly identified as major taste and odor compounds in water. In the present study, a simple and efficient method was established for the simultaneous determination of chloroanisoles and the precursor 2,4,6‐trichlorophenol in water by using low‐density‐solvent‐based simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography with electron capture detection. 2,4‐Dichloroanisole, 2,6‐dichloroanisole, 2,4,6‐trichloroanisole, 2,3,4‐trichloroanisole, and 2,3,6‐trichloroanisole were the chloroanisoles evaluated. Several important parameters of the extraction‐derivatization procedures, including the types and volumes of extraction solvent and disperser solvent, concentrations of derivatization agent and base, salt addition, extraction‐derivatization time, and temperature were optimized. Under the optimized conditions (80 μL of isooctane as extraction solvent, 500 μL of methanol as disperser solvent, 60 μL of acetic anhydride as derivatization agent, 0.75% of Na2CO3 addition w/v, extraction‐derivatization temperature of 25°C, without salt addition), a good linearity of the calibration curve was observed by the square of correlation coefficients (R2) ranging from 0.9936 to 0.9992. Repeatability and reproducibility of the method were < 4.5% and <7.3%, respectively. Recovery rates ranged from 85.2 to 101.4%, and limits of detection ranged from 3.0 to 8.7 ng/L. The proposed method was applied successfully for the determination of chloroanisoles and 2,4,6‐trichlorophenol in water samples.  相似文献   

4.
A novel magnetic core–shell material polyaniline@SiO2@Fe (PANI@SiO2@Fe) has been successfully synthesized and investigated as an effective adsorbent for the magnetic solid‐phase extraction of typical endocrine disrupting compounds such as bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol from water samples. The morphology of the as‐prepared PANI@SiO2@Fe was characterized by transmission electron microscopy and X‐ray diffraction. The main parameters that influenced the enrichment performance such as the kind of eluent, amount of adsorbent, volume of eluent, adsorption time, elution time, ionic strength, pH, concentration of humic acid, and sample volume were investigated. Under the optimal conditions, a good linear relationship was found in the range of 0.05–100 μg/L for bisphenol A, 0.05–300 μg/L for tetrabromobisphenol A, and 0.05–250 μg/L for 4‐nonylphenol, respectively. The correlation coefficients are all above 0.995. The limits of detection were in the range of 0.009–0.04 μg/L, and precisions were under 3.73% (n  = 6). The real water analysis indicated that the spiked recoveries were in the range of 92.9–98.9% (n  = 3). All these results indicated that the developed method was an efficient tool for the analysis of bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol.  相似文献   

5.
A novel hyphenated method based on ultrasound‐assisted dispersive liquid–liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4‐octylphenol, and 4‐nonylphenol by high‐performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0–400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5–1.2 ng/kg and 0.01–0.04 μg/kg, respectively. Relative standard deviations of intra‐ and inter‐day precision for retention time and peak area are in the range of 0.47–2.31 and 2.76–8.79%, respectively. Accuracy is satisfactory in the range of 81.5–118.7%. Relative standard deviations of repeatability are in the range of 0.35–1.43 and 2.36–4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4‐octylphenol, and 4‐nonylphenol are 170.5, 240.3, and 283.2, respectively. The results of recovery and matrix effect are in the range of 82.7–114.9 and 92.0–109.0%, respectively. The proposed method has been applied to the determination of bisphenol A, 4‐octylphenol, and 4‐nonylphenol in soft drinks and dairy products with much higher sensitivity than many other methods.  相似文献   

6.
This article presents an analytical method based on solid-phase extraction (SPE) and gas chromatography coupled with mass spectrometry for the simultaneous determination of the most frequently used acidic pharmaceutical residues, ibuprofen, diclofenac, naproxen and ketoprofen (KFN), and phenolic endocrine disruptors, bisphenol (BPA), triclosan (TCS), nonylphenol, nonylphenol monoethoxylate and nonylphenol diethoxylate, in wastewater and sewage sludge samples. In the first phase of the study, each compound has been characterized individually and afterwards in mixture as a trimethylsilyl derivative in order to identify the characteristic ions (m/z ratio) constituting the mass spectrum and to choose the ions for quantification and confirmation. Subsequently, derivatization was evaluated by testing different variables such as the volume of the derivatization solvent bis(trimethylsilyl)trifluoroacetamide and the effect of each catalyst, pyridine and 1% trimethyl chlorosilane, in the derivatized solution. For the analysis of wastewater samples, two commercial SPE cartridges, C18 and Oasis HLB, were compared for their extraction efficiency of the target compounds. The key parameter of extraction procedure included the effect of pH (2.5, 5.3 and 7) of the loading solution. For solid samples, parameters such as the extracted biomass, the volume of the extraction organic solvent and the effect of matrix interferences in chromatographic analysis were evaluated. By using C18 cartridges as purification procedure and ultrasound sonication, satisfactory mean relative recoveries with BPA-d16 and meclofenamic acid as surrogates were obtained ranging from 91% to 117% for wastewater and 84% to 107% for sewage sludge samples. Nine-point calibration of the standard mixture was performed by linear regression analysis with a correlation coefficient >0.99 for all the tested compounds. Limits of detection for the developed methods were established between 0.3 (KFN) and 14.8 (BPA) ng L−1, and 15.0 (TCS) and 32.9 (BPA) ng g−1 for wastewater and sewage sludge, respectively. Application to real samples of the wastewater treatment plant in Athens, the capital of Greece, demonstrated the presence of all tested compounds in most of the samples.  相似文献   

7.
A graphene oxide‐coated capillary was fabricated by using 3‐aminopropyltriethoxysilane as the cross‐linking agent. It was used for the separation and detection of three endocrine‐disrupting chemicals, including bisphenol A, 4‐nonylphenol, and 4‐octylphenol by capillary electrochromatography. Due to the hydrophobicity, hydrogen bonding, and π–π interaction between graphene oxide and the analytes, the three analytes could be well separated in pH = 11.0, 20 mmol/L Na2B4O7‐NaOH/methanol mobile phase (50:50, v/v) within 950 s. After preconcentration, the detection limits were 6.7 × 10?10, 3.3 × 10?9, and 6.7 × 10?10 mol/L (S/N = 3) for bisphenol A, nonylphenol, and octylphenol, respectively. The developed method was successfully applied to the determination of the above analytes in water samples. The satisfactory result demonstrated that the graphene oxide coated capillary used in capillary electrochromatography with amperometric detection was convenient to prepare, highly stable, and had good reproducibility.  相似文献   

8.
A ternary composite material based on Prussian blue, single‐walled carbon nanotubes and 1‐butyl‐3‐methylimidazolium hexafluorophosphate was prepared and tested for electrochemical detection of H2O2. The sensor allows amperometric detection of H2O2 at ?0.05 V, with a sensitivity of 137 mA M?1?cm?2. The nanocomposite provides a favorable microenvironment for immobilization of horseradish peroxidase (HRP). Determination of xenoestrogenic compounds was performed by enzymatic oxidation at the surface of modified screen printed biosensor in the presence of H2O2. The developed electrochemical biosensors exhibited high sensitivity, low detection limits, good operational and storage stability, for detection of 4‐t‐butylphenol, 4‐t‐octylphenol, 4‐n‐nonylphenol and 4‐n‐nonylphenol ethoxylate.  相似文献   

9.
A rapid and solvent‐free procedure for the determination of 4‐tert‐octylphenol and 4‐nonylphenol isomers in aqueous samples is described. The method involves in‐situ acetylation and microwave‐assisted headspace solid‐phase microextraction prior to their determination using gas chromatography–ion trap mass spectrometry operated in the selected ion storage mode. The dual experimental protocols to evaluate the effects of various derivatization and extraction parameters were investigated and the conditions optimized. Under optimized conditions, 300 μL of acetic anhydride mixed with 1 g of potassium hydrogencarbonate and 2 g of sodium chloride in a 20 mL aqueous sample were efficiently extracted by a 65 μm polydimethylsiloxane‐divinylbenzene fiber that was located in the headspace when the system was microwave irradiated at 80 W for 5 min. The limits of quantitation were 5 and 50 ng/L for 4‐tert‐octylphenol and 4‐nonylphenol isomers, respectively. The precision for these analytes, as indicated by relative standard deviations, were less than 8% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 to 88%. A standard addition method was used to quantitate 4‐tert‐octylphenol and 4‐nonylphenol isomers, and the concentrations ranged from 120 to 930 ng/L in various environmental water samples.  相似文献   

10.
A new method, pressurized CEC with end‐column amperometric detection using carbon paste electrode, has been developed for the separation and determination of five phenolic xenoestrogens in chicken eggs and milk powder samples. Efficient separation of five analytes was performed by pressurized CEC using a mobile phase consisting of 60% v/v ACN and 40% v/v Tris buffer (5 mmol/L, pH 8.0), +6 kV of applied voltage and 7.0 MPa of supplementary pressure. Detection limits of 50, 5, 2, 10 and 20 ng/mL for pentachlorophenol, bisphenol‐A, 2,4‐dichlorophenol, 4‐tert‐octylphenol and 4‐nonylphenol, respectively, were achieved using carbon paste electrode as working electrode and +0.8 V as detection potential. Matrix solid phase dispersion extraction method had been employed during sample preparation procedure, and mean recoveries ranged from 79.2 to 102.6% at different concentrations of phenolic xenoestrogens for spiked egg and milk powder samples were obtained.  相似文献   

11.
A Ni(II)tetrakis(4-sulfonatophenyl) porphyrin (NiTPPS)|carbon nanotube composite electrode that shows strong catalytic and antifouling capability was developed to detect a series of phenolic endocrine compounds including bisphenol A, nonylphenol and ethynylestradiol. This electrode was fabricated by electropolymerizing NiTPPS complexes on a carbon nanotube-modified glassy carbon electrode. Optimized experimental parameters including a hydrodynamic potential of 0.7 V for flow injection analysis (FIA) and a NiTPPS surface coverage of 2.2 nmol cm−2 (standard deviation 0.2 nmol cm−2; n = 6) were obtained for detection of the endocrine disrupting compounds. The sensor responded well to all the tested compounds with limits of detection ranging from 15 nmol L−1 to 260 nmol L−1 (based on three times S/N ratio) under FIA conditions. Both carbon nanotubes and NiTPPS account for the excellent performance of the composite modified electrode.  相似文献   

12.
The dummy molecularly imprinted polymers were prepared by Pickering emulsion polymerization. 4,4′‐(1‐Phenylethylidene) bisphenol was selected as the dummy template to avoid the leakage of the target bisphenols. The microsphere particles were characterized by scanning electron microscopy and nitrogen adsorption–desorption measurements, demonstrating that the regular‐shaped and medium‐sized particles (40–70 μm) were obtained with a specific surface area of 355.759 m2/g and a total pore volume of 0.561 cm3/g. The molecular imprinting properties of the particles were evaluated by static adsorption and chromatographic evaluation experiments. The association constant and maximum adsorption amount of bisphenol A were 0.115 mmol/L and 3.327 μmol/g using Scatchard analysis. The microsphere particles were then used as a solid‐phase extraction sorbent for selective extraction of seven bisphenols. The method of dummy molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection was successfully established for the extraction and determination of seven bisphenols from environmental sediment samples with method detection limits of 0.6–1.1 ng/g. Good recoveries (75.5–105.2%) for sediment samples at two spiking levels (500 and 250 ng/g) and reproducibility (RSDs < 7.7%, n = 3) were obtained.  相似文献   

13.
The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption–desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9‐fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R2 > 0.999) under optimized conditions for high‐performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R2 > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg1‐1/n mL1/n g–1) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method.  相似文献   

14.
Here in, magnetic nanoparticles combined with graphene oxide adsorbent were fabricated via a microwave‐assisted synthesis method, and used in the solid‐phase extraction of three phenolic compounds (phenol, 4‐nitrophenol, and m‐methylphenol) in environmental water samples. Various instrumental methods were employed to characterize the magnetic nanoparticles modified with graphene oxide. The influence of experimental parameters, such as desorption conditions, amount of adsorbent, extraction time, and pH, on the extraction efficiency was investigated. Owing to the high surface area and excellent adsorption capacity of the prepared material, satisfactory extraction was achieved. Under optimum conditions, a linear response was observed in the concentration range of 1.000–100.0 μg/L for phenol, 0.996–99.6 μg/L for 4‐nitrophenol, and 0.975–97.5 μg/L for m‐methylphenol, with correlation coefficients in the range of 0.9995–0.9997. The limit of detection (signal‐to‐noise ratio of 3) of the method varied between 0.5 and 0.8 μg/L. The relative standard deviations were <5.2%. The recovery percentages of the method were in the range of 89.1–104.3%. The results indicate that the graphene oxide‐modified magnetic nanoparticles possess high adsorptive abilities toward phenolic compounds in environmental water samples.  相似文献   

15.
As a part of a project aiming to assess the potential toxicological effects of contaminants in aquatic ecosystems, the objective of this work was to determine the occurrence of several selected endocrine-disrupting compounds in water and sediment and to estimate the estrogenicity of the water. The study consisted of four sampling campaigns at seven sampling points in the lower Llobregat catchment area (NE Spain). Water and sediment samples underwent chemical target analysis for 19 steroid estrogens and alkylphenols, which are known to be endocrine-disrupting compounds. In this study, the only estrogens detected in the water samples were estrone and estrone-sulfate, which were found at low levels (2–5 ng l−1). The alkylphenolic compound showing the highest concentrations was nonylphenol di-ether carboxylate (NP2EC), which was found at levels up to 30.62 μg l−1 in water samples and 535 ng g−1 in sediment samples. K d was determined for several alkylphenolic compounds and showed the expected trend of decreasing K d with increasing polarity. The concentrations of nonylphenol and octylphenol only exceeded the annual average of the European Union’s environmental quality standards (EQS) in one sampling point. However, the calculated estrogenic potential surpassed the expected effect concentration in several sampling points, indicating a potential risk. Therefore, we recommend that future EQS include short-chain alkylphenol ethoxylates and carboxylates.  相似文献   

16.
为实现小体积环境水样中酚类化合物的准确、快速、高灵敏测定,通过分散液液微萃取(DLLME)和荧光衍生化的结合,建立了高效液相色谱-荧光检测(HPLC-FLD)双酚A、壬基酚、辛基酚和对特辛基酚的分析方法。考察并优化了DLLME和衍生化条件,结果表明,最优的DLLME条件为萃取剂氯仿用量70μL,分散剂乙腈用量400μL,漩涡振荡3 min,高速离心2 min。以2-[2-(7 H-二苯并[a,g]咔唑-乙氧基)]-乙基氯甲酸酯(DBCEC-Cl)为柱前衍生试剂,在pH10.5的Na2CO3-NaHCO3缓冲液/乙腈溶液、50℃下衍生反应3 min得到稳定的衍生产物,于10min内实现了4种酚衍生物的分离。方法的检出限为0.9~1.6 ng/L,定量限为3.8~7.1 ng/L,具有良好的线性、精密度和回收率,与以往报道的方法相比具有一定的优势和实用性,可用于造纸厂废水、湖水、生活废水、自来水中4种酚类内分泌干扰物的测定。  相似文献   

17.
A solvent‐free method that uses headspace solid‐phase microextraction and gas chromatography with flame ionization detection is proposed for the determination of lignin‐derived phenols in sediments. The extraction and derivatization conditions for the simultaneous analysis of acetosyringone, acetovanillone, syringaldehyde, vanillin, ferulic acid, syringic acid, vanillic acid, p‐hydroxybenzoic acid, and p‐coumaric acid were optimized using a central composite design. After optimization, the best results were obtained with the following conditions: exposure of the polyacrylate fiber to the headspace with 60 μL of N ,O‐bis(trimethylsilyl)trifluoroacetamide as a derivatizing agent for 15 min and then extraction in the headspace of 100 mg of sediment (previously spiked with lignin‐derived phenols) for 35 min. The accuracy of the method was estimated based on recovery tests at two concentration levels and by comparison with a high‐performance liquid chromatography method reported in the literature. Based on the t‐test with a confidence level of 95%, no statistical differences were observed. The detection and quantification limits for the target compounds varied according to their characteristics: values at the microgram per gram level for nonacid compounds and milligram per gram level for phenolic acids, due to the lower volatility of the derivatives.  相似文献   

18.
A new silver‐functionalized silica‐based material with a core–shell structure based on silver nanoparticle‐coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l‐ cysteine. l‐ Cysteine‐silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid‐phase extraction method based on l‐ cysteine‐silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l‐ cysteine‐silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85–102%) with relative standard deviations below 5.2% (= 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.  相似文献   

19.
建立了超高效液相色谱-串联质谱法测定食品接触材料中双酚A、四溴双酚A、壬基酚和辛基酚迁移量的方法。样品经蒸馏水、3%乙酸溶液、10%乙醇溶液、20%乙醇溶液、50%乙醇溶液和异辛烷6种食品模拟物浸泡处理,浸泡液经C18色谱柱分离,以多反应监测(MRM)模式进行定性和定量。检测结果表明:在水基、酸性、酒精类食品模拟物中,双酚A、四溴双酚A、壬基酚、辛基酚的质量浓度均在0.001~0.50μg/mL范围内与其质谱响应值具有良好的线性关系,相关系数均不小于0.9995,方法检出限为0.01~0.25μg/kg,定量限为0.03~0.83μg/kg;在油基食品模拟物中,双酚A、四溴双酚A、壬基酚、辛基酚的线性范围均为0.01~0.50μg/mL,相关系数均不小于0.9989,方法检出限为0.10~2.50μg/kg,定量限为0.33~8.32μg/kg。双酚A、四溴双酚A、壬基酚、辛基酚的加标回收率为87.2%~101.2%,相对标准偏差为1.5%~3.4%(n=6)。该法样品处理步骤简单,准确度高,灵敏度好,可用于食品接触材料中烷基酚类化合物的检测。  相似文献   

20.
Summary Analysis of extracts from fish liver containing alkylphenol contaminants can be hindered by the presence of co-extracted fats and proteins that interfere with chromatographic analysis. In this study accelerated solvent extraction (ASE), Florisil clean-up, then combined liquid chromatography—mass spectrometry (LC-MS) with an electrospray (ESI) interface have been used to optimize an analytical procedure for the analysis of octylphenol, nonylphenol, and bisphenol A in fish liver. After comparison of the efficiency of ASE with conventional Soxhlet extraction the developed procedure was applied to the analysis of liver samples. Calibration plots of the relationship between concentration and the ratio of the responses to the analyte and to the internal standard, 4-n-nonylphenol, were determined by linear regression analysis over the concentration range 0.05 to 10 ppm and resulted in good fits (r 2>0.994). Recoveries (evaluated for each liver sample as the ratio between response to the surrogate compound, 4-n-nonylphenol, and that to the internal standard, 4-n-heptylphenol, relative to the same ratio for a reference standard solution) were 53±20%. Under the experimental conditions used in this work the limits of detection (LOD), calculated by use of a signal-to-noise ratio of 3∶1, were 5 ng g−1 for 4-t-octylphenol, 15 ng g−1 for bisphenol A, and 20 ng g−1 for nonylphenol. The method can be satisfactorily applied to screening analysis of octyl-and nonylphenols and bisphenol A in biological samples such as fish liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号