首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

2.
Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid–liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid–liquid microextraction was carried out using an organic solvent lighter than water (n‐hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05–100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4‐chlorophenol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol, respectively. The values of intra‐ and inter‐day relative standard deviations were in the range of 3.0–6.4 and 6.1–9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples.  相似文献   

3.
A single‐drop microextraction (SDME) method followed by in‐syringe derivatization and GC‐MS determination has been developed for analysis of five parabens, including methyl, ethyl, isopropyl, n‐propyl and n‐butyl paraben in water samples and cosmetic products. N,O‐Bis(trimethylsilyl)acetamide (BSA) was used as derivatization reagent. Derivatization reaction was performed inside the syringe barrel using 0.4 μL of BSA. Parameters that affect the derivatization yield such as temperature and time of the reaction were studied. In addition, experimental SDME parameters such as selection of organic solvent, addition of salt, extraction time and extraction temperature were investigated and optimized. The RSD of the method for aqueous samples varied from 8.1 to 13%. The LODs ranged from 0.001 (n‐butyl paraben) to 0.015 (methyl paraben) μg/L, and the enrichment factors were between 23 and 150.  相似文献   

4.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

5.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

6.
This work reports the development of a dispersive liquid – liquid microextraction method for the simultaneous extraction, preconcentration, and derivatization of Hg2+ and CH3Hg+ species from water samples for further determination by GC – MS. Some parameters of the proposed method, such as volume and type of disperser and extraction solvent, and Na[B(C6H5)4] concentration were investigated using response surface methodology. Suitable recoveries were obtained using 80 μL C2Cl4 (as extraction solvent), 1000 μL ethanol (as disperser solvent), and 300 μL 2.1 mmol/L Na[B(C6H5)4] (as derivatizing agent). Accuracy was evaluated in terms of recovery and ranged from 87 to 99% with RSD values <7%. In addition, a certified reference material of water (NIST 1641d) was analyzed and agreed with the certified value about 107% (for Hg2+), with RSD values <8.5%. LODs were 0.3 and 0.2 μg/L, with enrichment factors of 112 and 115 for Hg2+ and CH3Hg+, respectively. The optimized method was applied for the determination of Hg2+ and CH3Hg+ in tap, well, and lake water samples.  相似文献   

7.
A method based on direct immersion solid‐phase microextraction (DI‐SPME) coupled with high performance liquid chromatography combined with post‐column photochemically induced fluorimetry derivatization and fluorescence detection (HPLC‐PIF‐FD) was developed to extract three pyrethroid insecticides, i.e. cyfluthrin, cypermethrin, and flumethrin from water samples. A sol‐gel based coating fiber using 3‐(trimethoxysilyl propyl) amine as precursor was prepared and used for the extraction of the pyrethroids from groundwater samples. A post‐column photochemical reactor was designed and constructed for the derivatization of these environmentally important pollutants to increase their fluorescence sensitivity and determination in HPLC. The parameters affecting extraction process (extraction time and temperature, pH, salt addition, and co‐solvent) and desorption step (solvent, desorption time, and temperature) of the analytes from the sol‐gel‐based fiber, along with photochemical reaction conditions were investigated. The developed method proved to be relatively rapid, simple, and easy and offers high sensitivity and reproducibility. Linear dynamic ranges (LDR) for these insecticides were ranged between 0.25 to 50 μg/L. The regression coefficients were satisfactory (R2 > 0.984) for these pyrethroids. The limits of detection and limits of quantification varied between 0.09 and 0.35 μg/L and 0.25 and 1.00 μg/L, respectively. Relative standard deviation RSDs values varied between 4.41% and 6.20%. Relative recoveries obtained from analysis of Jajroud river water sample ranged between 94% and 104%.  相似文献   

8.
This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction (TA‐DLLME) followed by gas chromatography–flame ionization detection (GC‐FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2‐tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC‐FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r2 > 0.993), enrichment factors (820–1070), limits of detection (2–4 ng mL?1) and quantification (8–12 ng mL?1), and relative standard deviations (3–6%) for both intraday and interday precisions (concentration = 50 ng mL?1) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In a study aiming to characterize cork off‐flavour for quality control purposes, chloroanisoles were extracted and identified from cork stoppers by means of solid‐phase microextraction (SPME)–gas chromatography–ion‐trap mass spectrometry (GC–ITMS). An experimental design procedure was used to investigate the effects of some experimental parameters on the SPME of 2,4‐dichloroanisole, 2,6‐dichloroanisole, and 2,4,6‐trichloroanisole from cork stoppers by using a Carboxen‐PDMS 75 μm fibre. Variables such as extraction temperature, extraction time, and percentage of ethanol added to the matrix were optimized to improve extraction efficiency of chloroanisoles onto SPME fibre. Instrumental analysis was performed by GC–ITMS in the MS/MS mode. Preliminary analyses on standard solutions allowed selection of the appropriate ionization mode (i. e. electron impact or chemical ionization), providing for each analyte the highest instrumental response. In order to find polynomial functions describing the relationships between variables and responses, the analytical responses, i.e. the chromatographic peak areas, were processed by using the backward multiple regression analysis. For all the analytes the operating conditions providing the highest extraction yield inside the experimental domain considered were found.  相似文献   

10.
A rapid and sensitive analytical method has been developed for trace analysis of methyl tert‐butyl ether (MTBE) in water samples using dispersive liquid‐liquid microextraction and gas chromatography with flame ionization detection. Factors relevant to the microextraction efficiency, such as the kind of extraction solvent, the disperser solvent and their volumes, the effect of salt, sample solution temperature and the extraction time were investigated and optimized. Under the optimal conditions the linear dynamic range of MTBE was from 0.2 to 25.0 μg L?1 with a correlation coefficient of 0.9981 and a detection limit of 0.1 μg L?1. The relative standard deviation (RSD%) was less than 5.1% (n = 3) and the recovery values were in the range of 97.8 ± 0.9%. Finally, the proposed method was successfully applied for the analysis of MTBE in aqueous samples.  相似文献   

11.
In this research, solvent‐assisted dispersive micro‐SPE was introduced as a simple modified technique for the determination of parabens in water and cosmetic samples. Aminopropyl‐functionalized magnetite nanoparticles (MNPs) were successfully synthesized and applied. GC with photoionization detector was used for the separation and detection of parabens. In this method, hexylacetate (15 μL) as a solvent and aminopropyl‐functionalized MNPs (5 μg) as a sorbent were added to an aqueous sample (10 mL) and then the sample was sonicated. Dispersed magnetite was collected in the bottom of the conical tube by using a strong magnet and then ACN was added as a desorption solvent. Forty microliters of this solvent was transferred into a microvial and then acetic anhydride and pyridine were added, thus derivatization was performed by acetic anhydride. After evaporation, 1 μL of derivatized sample was injected into a gas chromatograph for analysis. Several important parameters, such as kind of organic solvent, desorption solvent and volume, amount of aminopropyl‐functionalized MNPs and effect of salt addition were investigated. Under optimum conditions, the limits of detection achieved were between 50 and 300 ng/L, with RSDs (n = 5) lower than 8%. Under the optimum conditions, the enrichment factors ranged from 217 to 1253 and the extraction recoveries ranged from 10 to 62%. The recoveries were obtained for the analytes in river water and mouthwash solution and hand cream in the range of 87–103%. The advantages of proposed method are simplicity of operation, rapidity, high extraction yields, and environmental friendly character.  相似文献   

12.
An ultrasound‐enhanced in situ solvent formation microextraction has been developed first time and compared with ultrasound‐enhanced ionic‐liquid‐assisted dispersive liquid–liquid microextraction for the HPLC analysis of acaricides in environmental water samples. A ionic liquid ([C8MIM][PF6]) was used as the green extraction solvent through two pathways. The experimental parameters, such as the type and volume of both of the extraction solvent disperser solvent, ultrasonication time, and salt addition, were investigated and optimized. The analytical performance using the optimized conditions proved the feasibility of the developed methods for the quantitation of trace levels of acaricides by obtaining limits of detection that range from 0.54 to 3.68 μg/L. The in situ solvent formation microextraction method possesses more positive characteristics than the ionic‐liquid‐assisted dispersive liquid–liquid microextraction method (except for spirodiclofen determination) when comparing the validation parameters. Both methods were successfully applied to determining acaricides in real water samples.  相似文献   

13.
A simple, rapid, sensitive, and environmentally friendly method, based on modified dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography was developed for the simultaneous determination of five biogenic amines in fermented food samples. Biogenic amines were derivatized with 9‐fluorenylmethyl chloroformate, extracted by vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, and then analyzed by high‐performance liquid chromatography. Five biogenic amine compounds were separated within 30 min using a C18 column and gradient elution with acetonitrile and 1% acetic acid. Factors influencing the derivatization and extraction efficiency such as type and volume of extraction solvent, type, and concentration of surfactant, pH, salt addition, and vortex time were optimized. Under the optimum conditions, the method provided the enrichment factors in the range of 161–553. Good linearity was obtained from 0.002–0.5 mg/L for cadaverine and tyramine, 0.003–1 mg/L for tryptamine and histamine, and 0.005–1 mg/L for spermidine with coefficient of determination (R2) > 0.992. The limits of detection ranged from 0.0010 to 0.0026 mg/L. The proposed method was successfully applied to analysis of biogenic amines in fermented foods such as fermented fish (plaa‐som), wine and beer where good recoveries were obtained in the range of 83.2–112.5%  相似文献   

14.
Monolithic fibers were synthesized and applied for the solid‐phase microextraction and determination of chlorophenols in environmental water samples by coupling with HPLC. The fibers were prepared by copolymerization of vinylimidazole and ethylene dimethacrylate as functional monomer and cross‐linker, respectively. The effect of the preparation conditions of monolithic fibers on the extraction efficiencies was investigated in detail. Several characteristic techniques, such as elemental analysis, infrared spectroscopy, mercury‐intrusion porosimetry, and SEM were used to characterize the monolithic material. The effect of the extraction parameters, including desorption solvent, extraction and desorption time, pH values, and ionic strength in sample matrix on the extraction performance was investigated thoroughly. Under the improved extraction conditions, the linear ranges of 2‐chlorophenol, 2,4‐dichlorophenol and pentachlorophenol were 1.0–200 μg/L and 2.0–200 μg/L for 2,4,6‐trichlorophenol. The detection limits (S/N = 3) were in the range of 0.16–0.45 μg/L, the RSDs for intraday and interday precisions were <7.0%. Finally, the proposed method was successfully used to detect different environmental water samples. The recoveries of spiked water samples were ranged from 90.0 to 115%. At the same time, satisfactory repeatability was achieved with RSDs < 9.0%.  相似文献   

15.
A simple and rapid ultrasound‐assisted dispersive liquid–liquid microextraction method coupled with GC‐flame ionization detection was developed for simultaneous determination of nine pyrethroids in domestic wastewater samples. An ultrasound‐assisted process was applied to accelerate the formation of the fine cloudy solution using small volume of disperser solvent, which markedly increased the extraction efficiency and reduced the equilibrium time. Various parameters affecting the extraction efficiency were investigated, including the type and volume of extraction solvent and disperser solvent, extraction and ultrasonic time. Good linearity was obtained for all analytes in the range of 0.8–100 μg/L with the correlation coefficient (r2)≥0.998. The recoveries at three spiking levels ranged from 75.3 to 101.2% with the RSD less than 8.7% (n=5). Under the optimum condition, the enrichment factors for the nine pyrethroids ranged from 728‐ to 1725‐fold. This method offered a good alternative for routine analysis due to its simplicity and reliability.  相似文献   

16.
A new facile, rapid, inexpensive, and sensitive method for the analysis of six trace trichlorophenols in seawater samples was developed by magnetic micro‐solid‐phase extraction coupled to liquid chromatography with tandem mass spectrometry. Core–shell covalently functionalized ferroferric oxide coated with aminated silicon dioxide and decorated with multiwalled carbon nanotubes was applied as an adsorbent to perform the extraction process. The effect of factors including solution pH, contact time, adsorbent amount, and ionic strength were investigated in detail. The obtained results revealed that the proposed adsorbent was a highly effective and low‐cost magnetic micro‐solid‐phase extraction material for the enrichment of 2,3,4‐trichlorophenol, 2,3,5‐trichlorophenol, 2,3,6‐trichlorophenol, 2,4,5‐trichlorophenol, 2,4,6‐trichlorophenol, and 3,4,5‐trichlorophenol from seawater. Under the optimized conditions, the recoveries ranged from 88.0 to 99.5% at the three spiking levels, the limits of detection and the limits of quantification were 0.002 and 0.007 μg/L for the six trichlorophenols, respectively. The intra‐ and interday relative standard deviations were 2.0–6.7 and 4.5–8.9%, respectively. The calibration curves showed a good linearity in the range of 0.02–5.0 μg/L. The routine run analyses showed that the developed method was fast, simple, accurate, solvent‐saving and high resolution, and it was suitable for the determination of trace trichlorophenols in seawater.  相似文献   

17.
In this study, a simple and rapid extraction method based on the application of polypyrrole‐coated Fe3O4 nanoparticles as a magnetic solid‐phase extraction sorbent was successfully developed for the extraction and preconcentration of trace amounts of formaldehyde after derivatization with 2,4‐dinitrophenylhydrazine. The analyses were performed by high‐performance liquid chromatography followed by UV detection. Several variables affecting the extraction efficiency of the formaldehyde, i.e., sample pH, amount of sorbent, salt concentration, extraction time and desorption conditions were investigated and optimized. The best working conditions were as follows: sample pH, 5; amount of sorbent, 40 mg; NaCl concentration, 20% w/v; sample volume, 20 mL; extraction time, 12 min; and 100 μL of methanol for desorption of the formaldehyde within 3 min. Under the optimal conditions, the performance of the proposed method was studied in terms of linear dynamic range (10–500 μg/L), correlation coefficient (R2 ≥ 0.998), precision (RSD% ≤ 5.5) and limit of detection (4 μg/L). Finally, the developed method was successfully applied for extraction and determination of formaldehyde in tap, rain and tomato water samples, and satisfactory results were obtained.  相似文献   

18.
2,4‐Dichlorophenol (2,4‐DCP) and 2,4,6‐trichlorophenol (2,4,6‐TCP) by the use of cetylpyridinium chloride (CPCl) as a regulator was studied for their separation by the paper capillary permeation adsorption (PCPA) separation technique. The effect of pH, the type of PCPA treatment, the concentration of cetylpyridinium chloride, and various inorganic salts on the separatability has been investigated. A nearly 100% separatability was obtained at pH values 5–11 and 5–11, respectively, for 2,4‐dichlorophenol and 2,4,6‐trichlorophenol when cetylpyridinium chloride was present. It was confirmed that 2,4‐dichlorophenol and 2,4,6‐trichlorophenol are separated by adsorption on the fiber surface as ion pairs at the pH. Addition of inorganic salts decreases the separatability.  相似文献   

19.
《Analytical letters》2012,45(5):937-946
Abstract

This study reported that the hapten of 2,4,6‐trichlorophenol (2,4,6‐TCP) was synthesized by using 2,4,6‐TCP reacted with chloroactic acid in alkaline solution. The hapten was conjugated to bovine serum albumin (BSA) with the modified active ester method to form artificial immune antigen. The anti‐TCP polyclonal antibodies were obtained by using the artificial immuneantigen (TCP‐BSA) to immunize the rabbits. Using the purified antiserum of highest specificity, an antibody‐coated fluoroimmunoassay was developed that shows an IC50 of 4.8 µg/L with a limit of detection of 0.25 µg/L. The antibody showed negligible cross‐reactivity with other phenols, which makes their assays suitable for the selective detection of 2,4,6‐TCP. It shows a good accuracy and suitability to analyze, 2,4,6‐TCP in environmental water.  相似文献   

20.
In this work, for the first time, headspace (HS) single‐drop microextraction and simultaneous derivatization followed by GC‐MS was developed to determine the aliphatic amines in tobacco samples. In the HS extraction procedure, the mixture of derivatization reagent and organic solvent was employed as the extraction solvent for HS single‐drop microextraction and in situ derivatization of aliphatic amine in the samples. Fast extraction and simultaneous derivatization of the analytes were performed in a single step, and the obtained derivatives in the microdrop extraction solvent were analyzed by GC‐MS. The optimized experiment conditions were: sample preparation temperature of 80°C and time of 30 min, HS extraction solvent (the mixture of benzyl alcohol and 2,3,4,5,6‐pentafluorobenzaldehyde) volume of 2.0 μL, extraction time of 90 s. With the optimal conditions, the method validations were also studied. The method has good linearity (R2 more than 0.99), accepted precision (RSD less than 13%), good recovery (98–104%) and low limit of detection (0.11–0.97 μg/g). Finally, the proposed technique was successfully applied to the analyses of aliphatic amines in tobacco samples of seven different brands. It was further demonstrated that the proposed method offered a simple, low‐cost and reliable approach to determine aliphatic amines in tobacco samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号