首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Polysiloxanes are an important class of polymers for optoelectronic applications. Novel polysiloxanes with high-refractive index (RI) based on phenanthrenyl-substituted monomers are prepared by a polycondensation reaction starting from various substituted dialkoxysilanes as monomers. The substitution patterns on the Si atom are systematically changed to vary the properties of the linear polymers as well as the final cured material. The two monomers with polycyclic aromatic side groups 9-phenanthrenylmethyldimethoxysilane and 9-phenanthrenylphenyldimethoxysilane are synthesized and fully characterized, including their single crystal X-ray structures. Linear polysiloxanes with variations in hydride, methyl, vinyl, phenyl, and phenanthrenyl side group content are prepared by acid- and base-catalyzed polycondensation reactions. Both Si H and Si vinyl substituted polymers with molecular weights up to 30 kDa and adjustable RI's from 1.52 to 1.63 are obtained and the thermally cured by Pt-catalyzed hydrosilylation reactions. Polysiloxane resins are obtained with high-RI's, optical transmittance above 95% and thermal stabilities up to 420°C. Long-term thermal stability tests show transmittance values above 85% even after 60 days of thermal treatment at 180°C.  相似文献   

2.
Spontaneous copolymerization of cyclic ketene acetal, 2-methylene-4-phenyl-1,3-dioxolane ( I ) with common electrophilic vinyl monomers, such as methyl α-cyanoacrylate (MCA), acrylonitrile (AN), and methyl methacrylate (MMA) were investigated to further explore zwitterion polymerization method with cyclic ketene acetals. In the reaction of I with MCA and AN, spontaneous copolymerization took place at ambient temperature. The copolymers of I with MCA gave low molecular weight polymers, but copolymers obtained with I and AN were high molecular weight polymers. In the reaction of I and MMA, high molecular weight copolymer was obtained only at temperatures above 80°C. Thus, obtained polymers were not the alternating copolymers and possessed high I content in all the cases. From the above results, macrozwitterionic mechanism was suggested as discussed.  相似文献   

3.
A series of exo-methylene 6-membered ring conjugated dienes, which are directly or indirectly obtained from terpenoids, such as β-phellandrene, carvone, piperitone, and verbenone, were radically polymerized. Although their radical homopolymerizations were very slow, radical copolymerizations proceeded well with various common vinyl monomers, such as methyl acrylate (MA), acrylonitrile (AN), methyl methacrylate (MMA), and styrene (St), resulting in copolymers with comparable incorporation ratios of bio-based cyclic conjugated monomer units ranging from 40 to 60 mol% at a 1:1 feed ratio. The monomer reactivity ratios when using AN as a comonomer were close to 0, whereas those with St were approximately 0.5 to 1, indicating that these diene monomers can be considered electron-rich monomers. Reversible addition fragmentation chain-transfer (RAFT) copolymerizations with MA, AN, MMA, and St were all successful when using S-cumyl-S’-butyl trithiocarbonate (CBTC) as the RAFT agent resulting in copolymers with controlled molecular weights. The copolymers obtained with AN, MMA, or St showed glass transition temperatures (Tg) similar to those of common vinyl polymers (Tg ~ 100 °C), indicating that biobased cyclic structures were successfully incorporated into commodity polymers without losing good thermal properties.  相似文献   

4.
This paper describes a versatile and effective method for the control of free radical polymerization and its use in the preparation of narrow polydispersity polymers of various architectures. Living character is conferred to conventional free radical polymerization by the addition of a thiocarbonylthio compound of general structure S=C(Z)SR, for example, S=C(Ph)SC(CH3)2Ph. The mechanism involves Reversible Addition-Fragmentation chain Transfer and, for convenience of referral, we have designated it the RAFT polymerization. The process is compatible with a very wide range of monomers including functional monomers such as acrylic acid, hydroxyethyl methacrylate, and dimethylaminoethyl methacrylate. Examples of narrow polydispersity (≤1.2) homopolymers, copolymers, gradient copolymers, end-functional polymers, star polymers, A-B diblock and A-B-A triblock copolymers are presented.  相似文献   

5.
Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2 and a diol (HOR′OH = 1,4-cyclohexanedimethanol, 1,4-benzenedimethanol, tetraethylene glycol, or 1,12-dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2 and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2) –[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2 oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2 oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2 with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2 with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, TGA, DSC, and SEC. 31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures and Tg profiles. The polymers have weight average MWs of up to 3.8 × 104 Da.  相似文献   

6.
Anionic graft copolymers were synthesized through grafting of poly(ethylene glycol) monomethyl ether (MPEG) onto terpolymers containing succicinic anhydride groups. The backbone polymers were prepared through radical terpolymerization of maleic anhydride, styrene, and one of the following monomers: methyl methacrylate, ethylhexyl methacrylate, and diethyl fumarate. MPEG of different molecular weights were grafted onto the backbone through reactions with the cyclic anhydride groups. In this reaction one carboxylic acid group is formed together with each ester bond. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H-NMR. Thermal properties were examined by DSC. Graft copolymers containing 50% w/w of MPEG 2000 grafts were found to be almost completely amorphous, presumably because of crosslinking, and hydrogen bonding between carboxylic acid groups in the backbone and the ether oxygens in MPEG grafts. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
With tetrahydrofuran as a solvent and pyridium p‐toluenesulfonate as a catalyst, the hydroxyalkyl vinyl ethers 2‐hydroxyethyl vinyl ether (2E), 4‐hydroxybutyl vinyl ether (4B), and 6‐hydroxyhexyl vinyl ether (6H) underwent step‐growth self‐polyaddition, generating polymers with an acetal main‐chain structure. The molecular weight of the resulting polymers increased gradually during the initial polymerization period at room temperature. However, decomposition occurred after about 22–24 h, and the presence of a large amount of catalyst accelerated the latter process. The three monomers exhibited different polymerization capabilities. In contrast to the smooth polymerization of 6H, cyclization side reactions usually took place during the polymerizations of 4B and 2E, which resulted in low polymer yields and low molecular weights because of the formation of unreactive small cyclic acetals. In the self‐polyaddition of 4B, this side reaction was greatly restricted at high concentrations of the monomer. Higher temperatures (60–70 °C) remarkably accelerated the self‐polyaddition process to produce polymers with high molecular weights. However, the polymerizations at high temperatures had to be terminated within about 2 h to avoid the severe decomposition of the polymers. Copolymers were also obtained via the copolyaddition of any two of the monomers. The easiness of the incorporation of the monomers into the copolymers was in the sequence 6H > 4B > 2E. Poly(6H), poly(4B), poly(2E), and the copolymers possessed different hydrophilicities and were stable in basic, neutral, and even weak acidic media but exhibited degradation in the presence of a strong acid. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3751–3760, 2000  相似文献   

8.
Homopolymer bearing cyclic carbonate (CC) group, ABA type triblock copolymers, and (AC)B(AC) type terpolymers with statistical arrangement of A and C monomers bearing side chain CC groups are reported here. Difunctional poly(ethylene glycol) macroinitiators (PEGMIs) were prepared from PEG of three different molecular weights. PEGMIs were subsequently used for the preparation of polymers bearing CC pendant groups from cyclic carbonate methacrylate (CCMA) under atom transfer radical polymerization to yield polymers with low polydispersity index. Homopolymer and ABA type triblock copolymers were obtained by polymerizing CCMA monomer and (AC)B(AC) type statistical terpolymers were obtained when methyl methacrylate was included as a comonomer. No polymer was obtained when styrene was used as comonomer. The cyclic carbonate groups were subjected to ring‐opening reaction with monoamine to yield side chain hydroxyurethane polymers with increased solubility and diamines to yield crosslinked insoluble materials. Changes in wettability characteristics were studied by following the water contact angle of the polymers before and after ring‐opening reaction involving the cyclic carbonate pendant group. The polymers which composed of electrolyte in the form of PEG and coordinating species in the form of pendant cyclic carbonate groups showed conductivity in the range of 2–5 × 10?6 Scm?1 at 23 °C after doping with lithium bis(trifluoromethane)sulfonimide as characterized by impedance spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1622–1632, 2010  相似文献   

9.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

10.
The synthesis and characterization of two novel cyclic siloxanes, diacetoxydiethyltetramethylcyclotetrasiloxane and diacetoxytriethylpentamethylcyclopentasiloxane, and cyclolinear polymers synthesized from these monomers are presented. The cyclic siloxanes were synthesized from tetramethylcyclotetrasiloxane and pentamethylcyclopentasiloxane, respectively, by acetylation followed by ethylation. The cyclic monomers were characterized with 1H NMR spectroscopy. Subsequently, the cyclic siloxanes were self‐condensed into cyclolinear polysiloxanes and cocondensed (extended) with silanol‐terminated polydimethylsiloxane into high‐molecular‐weight polymers containing cyclic units withlinearpolydimethylsiloxane spacers (extended cyclolinear polysiloxanes). The molecular weights of both the cyclolinear polysiloxanes and extended cyclolinear polysiloxanes were determined. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4039?4052, 2006  相似文献   

11.
The sequential copolymerization of 1,3,6-trioxacyclooctane (TOC) and 1,3-dioxolane (DOL) (B) with various vinyl monomers (A) was investigated. Under appropriate conditions amphiphilic block copolymers of the type AB and ABA were formed. The reaction mixtures and the isolated polymers were analyzed by GPC (double detection—IR and UV at 254 nm), IR, 1H-, and 13C-NMR spectroscopy. Block copolymers with chosen molecular weights and low polydispersity could be obtained only by sequential copolymerization of p-methoxystyrene on “living” TOC. In the polymerization of DOL with α-methylstyrene and i-butyl vinyl ether (IBVE) transfer reactions take place to a larger degree.  相似文献   

12.
This article describes the synthesis of bifunctional block copolymers (BCPs) of type 4 bearing orthogonally reactive backbone substituents such as 1,1,1,3,3,3‐hexafluoroisopropoxycarbonyl groups as active esters and α‐hydroxyalkylphenylketones (2‐hydroxy‐2‐methyl‐1‐phenylpropan‐1‐one) as additional photoactive moieties via reversible addition fragmentation chain transfer (RAFT) polymerization. As monomers 1,1,1,3,3,3‐hexafluoroisopropyl acrylate (HFIPA) and 2‐hydroxy‐2‐methyl‐1‐(4‐vinyl)phenylpropan‐1‐one (HAK) are used. Controlled radical polymerization provides BCPs p(HFIPA)‐b‐p(HAK) with molecular weights (Mn) ranging from 15,000 to 37,000 g mol?1 and low molecular weight distributions (PDI = 1.2–1.4). The incorporated HFIPA and HAK moieties are used for sequential chemoselective postmodification of 4 . The photoactive block of 4 can be functionalized through a nitroxide photoclick trapping reaction in the presence of functionalized nitroxides and the active ester moieties of the p(HFIPA)‐block are readily thermally amidated using various amines. Chemically modified polymers are characterized by NMR, FTIR, and GPC methods which reveal a high degree of postfunctionalization, typically >95% for both orthogonal processes. The chemically modified polymers feature a narrow molecular weight distribution. The process is successfully applied to the synthesis of a small polymer library and also to the preparation of homo and block polynitroxides using 4‐amino‐TEMPO as amine component in the transamidation reaction. The polynitroxides obtained are characterized by cyclic voltammetry, FTIR, and UV–vis spectroscopy. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 52, 258–266  相似文献   

13.
二氧化碳共聚物的合成,性质和应用   总被引:8,自引:0,他引:8  
二氧化碳是开发中的重要的碳资源,它的一个有效利用方式是和环氧化物等单体共聚生成脂肪族聚碳酸酯。该反应现已能够较顺利地实现。反应中加入第三单体、扩链剂、调节剂,可以使共聚物具有不同的化学结构,以及能随意控制分子量和官能度。在了解反应系统的相平衡特性和共聚动力学以后,可以聚合过程的计算机模拟。使用交联,共混复合或网络互穿等手段,能够使产物具有各种不同的性能。二氧化碳共聚物已在许多方面获得重要的应用,是  相似文献   

14.
Significant structural effects of enol ether monomers were demonstrated in cationic alternating copolymerizations with benzaldehyde derivatives (BzAs). α‐Methyl, β‐methyl, β,β‐dimethyl, and cyclic enol ethers were copolymerized with BzAs by the EtSO3H/GaCl3 system with 1,4‐dioxane in toluene at ?78 °C. β‐Methyl and cyclic monomers, β‐monosubstituted compounds, induced copolymerizations with BzAs, some of which were well controlled to yield alternating copolymers with controlled molecular weights (MWs) and narrow MW distributions. Conversely, an α‐methyl vinyl ether (VE) did not copolymerize with BzAs at all, probably due to its high reactivity and unfavorable ketal linkage formations. In addition, a β,β‐dimethyl VE underwent only cyclotrimerizations because of its larger steric repulsion. The product alternating copolymers, especially those with cyclic units, exhibited improved thermal properties compared to those with simple VEs units. Under appropriate conditions, the alternating copolymers selectively degraded into the corresponding cinnamaldehyde derivatives by acid hydrolysis. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1334–1343  相似文献   

15.
New norbornene type monomer bearing reactive triethoxysilyl group was synthesized, and its addition homo- and copolymerization with 3-trimethylsilyltricyclonon-7-ene was studied. The target monomer was obtained using regio- and stereospecific [2σ+2σ+2π] cyclo-addition of quadricyclane with vinyltrichlorosilane followed by the reaction of the formed cycloadduct with ethanol in the presence of triethylamine. Addition polymerization was investigated over the three-component Pd-containing catalytic system (Pd complex, Na+[B(3,5-(CF3)2C6H3)4]–(cocatalyst) and tricyclohexylphosphine). The N-heterocyclic carbene Pd complex (SIPrPd(cinn)Cl) with high activity and tolerance to the Si—O—C moieties was used as a catalyst. The yields of the homo- and copolymers were 24—68% depending on the monomer (comonomer): Pd: B: PCy3 ratio. The obtained addition polymers are high-molecular-weight amorphous products, the glass transition temperature of which exceeds 300 °C. The presence of reactive Si(OC2H5)3 groups in the homo- and copolymers made it possible to carry out a hard-to-realize cross-linking involving side substituents and followed by the formation of insoluble polymers.  相似文献   

16.
The reaction promoted by diphenyl chlorophosphate (DPCP) and LiCl was found to be effectively used for the preparation of aromatic polyesters with high molecular weights directly from hydroxybenzoic acids when the condensing agent was added dropwise. The reaction was successfully to the direct polycondensation reaction of p-aminobenzoic and hydroxybenzoic acids, giving high-molecular-weight copoly(amide—ester)s soluble in amide or phenolic solvents. Copolycondensations of isophthalic and terephthalic acids with bisphenols and aromatic diamines were also examined by adding the DPCP solution to a mixture of these monomers or by initial reaction of DPCP with the acids followed by dropwise addition of a mixture of bisphenols and the diamines. The latter stepwise reaction gave random copolymers soluble in amide and phenolic solvents. Thermal properties of these copolymers were studied.  相似文献   

17.
Summary: Different kinds of polyethylene and ethylene-1-hexene copolymers were synthesized with TpTiCl2(OR) (Tp = hydrotris(pyrazolyl)borate; R = Et, i-Pr, n-Bu) catalysts with and without H2. The polymers were characterized by 13C NMR, capillary viscosimetry or GPC, and DSC. The homopolymers showed properties characteristic of ultra-high molecular weight polyethylenes (UHMWPE) with linear structure and high density polyethylenes (HDPE) with molecular weights in the range of commercial grades under hydrogen atmosphere. The copolymers showed a 1-hexene incorporation up to 6 mol-%. Important differences in the thermal properties were observed between the first DSC (nascent powders) and the second DSC heatings (melt-crystallized samples), which evidenced the molecular weights influence on the melt-crystallized samples.  相似文献   

18.
含氟丙烯酸酯聚合物由于氟原子的改性作用而具有优异的表面特性,不仅稳定,具有很好的耐氧化和耐腐蚀性,而且具有较好的耐水、耐油及耐污性,可望在新材料的开发、理论研究和实际应用等方面获得广泛的应用.而原子转移自由基聚合(ATRP)又可为分子设计和合成提供很有效的途径,利用这种聚合可以获得预期结构和性能的含氟嵌段聚合物材料,充分发挥含氟元素的改性作用.本文综述了ATRP在丙烯酸氟烷基酯聚合物合成方面的应用,并介绍了国内外在此领域的研究状况.  相似文献   

19.
The syntheses of several monomers, bioactive poly[(3, 4-dihydro-2H-pyran)-alt-(maleic anhydride)] and its derivatives, which have different substituents (e.g., acetoxy, methoxy, ethoxy, methoxycarbonyl, formyl, acetoxymethyl, and tosyloxymethyl groups) in the 2-position of the tetrahydropyran ring of the copolymer backbone, are described. The alternating sequences in copolymers of the dihydropyran derivatives and maleic anhydride were obtained from the equimolar and larger ratios of maleic anhydride to dihydropyran derivative at the onset of the copolymerization. The molecular weights of the copolymers were found to be low (Mn = 1000–7500) due to a transfer reaction of the dihydropyran derivatives. Hydrolyses of the anhydride groups in the copolymers without catalyst afforded poly[(dihydropyran)-alt-(maleic acid)] and its derivatives, whereas an additional three copolymers having substituents, e.g., hydroxy, hydroxymethyl, and carboxyl groups were obtained by hydrolyses of the pendent groups (acetoxy, acetoxymethyl, and methoxycarbonyl) with the aid of a hydroxide catalyst. Carbamoyl groups on the polymers were obtained from ammonolysis of methoxycarbonyl groups. The polymers having mercaptomethyl or aminomethyl groups were obtained by substitution of hydrogen sulfide or ammonia for tosyloxylmethyl groups.  相似文献   

20.
New cholesterol side-functionalised polycarbonate polymers were synthesised by the ring-opening homo- and copolymerisation reaction of the cyclic monomer cholesteryl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate and d,l-lactide using Sn(Oct)2 as a catalyst. The chemical structures and average molecular weights of the cyclic monomer, homopolymer and block copolymers obtained in this study were characterised using FT-IR, 1H NMR and gel permeation chromatographic measurement. The mesomorphism and mesophase structure were investigated with polarising optical microscopy, differential scanning calorimetry and X-ray diffraction measurement. As a result, the homopolymer and block copolymers showed an enantiotropic smectic A (SmA) phase. With the concentration of the lactide segment increasing, the glass transition temperature and isotropic temperature of the corresponding block copolymer all decreased. In addition, XRD suggested that the homopolymer and two block copolymers showed the SmA double-layer packing of side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号