首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
通过分子动力学对细胞松弛素B与葡萄糖/质子共转运蛋白的两种质子化状态进行了模拟, 发现细胞松弛素B对处于去质子化阶段的葡萄糖转运蛋白具有更好的抑制效果. 结果表明, 357号色氨酸和117号脯氨酸是葡萄糖转运蛋白结合细胞松弛素B的关键氨基酸; 并且当抑制剂与受体蛋白结合时, 位于第10号跨膜螺旋上的357号色氨酸与细胞松弛素B的相对位置对抑制剂的结合有重要意义.  相似文献   

2.
应用序列同源性cDNA作探针,从大鼠小肠壁细胞cDNA文库中筛选出了葡萄糖转运蛋白cDNA克隆。经双脱氧法测定该克隆的cDNA全序列为2466bp,翻译区1566bp,编码522个氨基酸。从氨基酸全序列分析得到12个疏水区段,每区段为21个氨基酸。此葡萄糖转运蛋白可能在细胞膜上跨膜12次,构成葡萄糖通道。  相似文献   

3.
为了研究正电子核素18F标记的葡萄糖转运蛋白显像剂6-18氟-6-脱氧葡萄糖的制备及在小鼠体内的生物学分布, 以D-葡萄糖为起始原料, 经过丙酮和苯甲醛对1,2,3,5位羟基的定位保护, 然后用对甲苯磺酰氯和6位的羟基反应得到能被18F-进攻的离去基团, 最后用18F-离子通过亲核取代反应实现对葡萄糖6位的氟代标记; 反应中间体用NMR和MS表征, 最终产物用标准品6-19FDG在HPLC下对照确认, 测定放化纯度, 观察其在小鼠体内的生物学分布. 6-18氟-6-脱氧葡萄糖的放射性标记过程需35 min(从加速器轰击结束算起), 放化产率70%±5%(校正后, n=5), 放化纯度>95%. 小鼠体内的生物学分布表明, 各个器官在1.0 min达到峰值, 然后逐渐平衡. 初步研究结果表明, 6-18FDG是一种很有价值的葡萄糖转运蛋白显像剂, 为以后的体内外研究及活体显像奠定了基础.  相似文献   

4.
孙子茹  刘胜男  高清志 《化学进展》2020,32(12):1869-1878
基于肿瘤细胞与正常细胞葡萄糖代谢差异的肿瘤沃伯格效应,是目前新型靶向抗肿瘤药物开发的研究热点之一。本文以沃伯格效应的代谢特征和特异性生物标识物为出发点,从靶向葡萄糖转运蛋白(GLUTs)生物靶点和利用肿瘤葡萄糖代谢亢进的生物特征这两个层面,综述了具有代表性的GLUTs抑制剂以及GLUTs靶向型糖偶联抗肿瘤药物的研发现状,讨论并解析通过靶向沃伯格效应开发抗肿瘤药物的设计思路、实施策略与推广前景。  相似文献   

5.
张明明  樊建芬  于怡  闫希亮  许健 《化学进展》2015,27(11):1658-1664
铵转运蛋白广泛存在于细菌、真菌、植物以及动物等各种生命体中。生物铵转运蛋白对NH3/NH4+的传输作用已被广泛研究,然而,对于通过铵转运蛋白疏水性孔腔的物种是带电荷的NH4+离子还是电中性的NH3分子,仍存在很大争议。本文综述了近年来生物铵转运蛋白对NH3/NH4+作用机理的研究进展,主要包括NH3或NH4+的传输及NH3和H+共传输等机理。  相似文献   

6.
基于弹性网络模型的热力学方法, 识别出麦芽糖转运蛋白质体系中的关键残基, 探讨了麦芽糖转运蛋白内长程协同效应, 研究结果有助于更好地理解该转运体系发挥生物学功能的分子机制.  相似文献   

7.
在合成了葡萄糖基和甲氧乙氧基共取代聚膦腈的基础上,进一步通过向聚膦腈主链引入一定量带自由氨基的取代基,与戊二醛反应交联后,获得了具有化学交联点的聚膦腈水凝胶.该水凝胶与伴刀豆球蛋白(Con A)结合后,水凝胶的溶涨平衡性能表现出对葡萄糖浓度的依赖性.将负载有胰岛素的聚膦腈水凝胶交替置于含不同葡萄糖浓度(4 mg/mL和1 mg/mL)的介质中,可检测到在高浓度葡萄糖环境下,胰岛素的释放明显加快,而当葡萄糖的浓度降低后,在一段时间内几乎检测不到胰岛素的释放,但随着浸泡时间的延长,仍会逐渐出现胰岛素从凝胶缓慢扩散释放的现象.以上研究表明,化学交联的葡萄糖基取代聚膦腈水凝胶可用于对胰岛素的葡萄糖响应释放.  相似文献   

8.
含铁蛋白介导的铁转运分子机制   总被引:2,自引:0,他引:2  
孙雪松  何庆瑜 《化学进展》2007,19(12):1986-1990
铁是生命体必需的微量元素,因为它是一些重要功能酶的协同因子。这些功能酶有着广泛的功能,从呼吸作用到核酸的复制。但是,当铁含量多于细胞稳态的时候,它将产生对机体有毒的羟基。生物体已经发展了自身的调控机制,包括铁的摄取,存储和输出来控制细胞内的铁处于平衡态。二价阳离子转运蛋白,铁输出蛋白和hephaestin参与小肠吸收,转铁蛋白和转铁蛋白受体参与铁的摄取和转运,铁蛋白可以存储铁,铁调控蛋白的功能是调节铁代谢。这篇文章综述着重阐述了含铁蛋白介导的铁传递机制。  相似文献   

9.
葡萄糖敏感型水凝胶最新研究进展   总被引:3,自引:0,他引:3  
糖尿病是由于胰岛素分泌不足引起的一种新陈代谢疾病,对糖尿病的有效控制在于不间断的测定血糖浓度并适时的释放胰岛素.因此,能够对环境葡萄糖浓度变化做出应答的功能型高分子材料葡萄糖敏感水凝胶,在生物化学和生物医学领域引起了极大的关注.本文综述了近几年国内外葡萄糖敏感型水凝胶的研究现状,重点介绍了应用于胰岛素释放体系和生物传感器领域的载有葡萄糖氧化酶、伴刀豆球蛋白和苯硼酸基团等葡萄糖敏感型水凝胶的作用机理和最新研究进展,展望了今后的研究方向.  相似文献   

10.
姚雪霞 《化学研究》2010,21(6):71-76
葡萄糖激酶(GK)催化葡萄糖转变为6-磷酸葡萄糖,这是糖代谢的第一步.正因为如此,GK活性异常在糖代谢紊乱的发生发展中起着重要作用.对青年型早发糖尿病(MODY2)和高胰岛素性低血糖症(PHHI)的深入研究证实GK活性改变与糖尿病的发生有关.为了研究GK活性改变的机理,利用分子动力学模拟和隐性溶剂的自由能计算对GK的单点突变Y214C(Tyr214→Cys)进行了理论研究.通过GK的Cα原子均方根浮动变化(RMSF)和动态相关性矩阵(DCCM)分析发现,Y214C突变导致处于活化状态的GK的构象更加稳定;通过包结自由能分析发现,Y214C突变可增加GK对葡萄糖的包结亲合性.相关研究结果有助于从原子水平理解Y214C活性突变的机制,并为糖尿病的治疗提供一定的理论参考.  相似文献   

11.
Type 2 diabetes mellitus (T2DM) is linked to insulin resistance and a loss of insulin sensitivity, leading to millions of deaths worldwide each year. T2DM is caused by reduced uptake of glucose facilitated by glucose transporter 4 (GLUT4) in muscle and adipose tissue due to decreased intracellular translocation of GLUT4-containing vesicles to the plasma membrane. To treat T2DM, novel medications are required. Through a fluorescence microscopy-based high-content screen, we tested more than 600 plant extracts for their potential to induce GLUT4 translocation in the absence of insulin. The primary screen in CHO-K1 cells resulted in 30 positive hits, which were further investigated in HeLa and 3T3-L1 cells. In addition, full plasma membrane insertion was examined by immunostaining of the first extracellular loop of GLUT4. The application of appropriate inhibitors identified PI3 kinase as the most important signal transduction target relevant for GLUT4 translocation. Finally, from the most effective hits in vitro, four extracts effectively reduced blood glucose levels in chicken embryos (in ovo), indicating their applicability as antidiabetic pharmaceuticals or nutraceuticals.  相似文献   

12.
Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually show severe side effects. In the last few decades, plant-derived drugs have been intensively studied, particularly because of a rapid development of the instruments used in analytical chemistry. We tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence and presence of insulin, 3.5 and 5.2 times (at 250 μg/mL), respectively. Fraction 1 and 3 showed no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation up to 2.0 times. Gas chromatography–mass spectrometry of silylated fractions revealed 98 distinct compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents. These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic agents for T2D.  相似文献   

13.
Glucose transporters play an essential role in cancer cell proliferation and survival and have been pursued as promising cancer drug targets. Using microarrays of a library of new macrocycles known as rapafucins, which were inspired by the natural product rapamycin, we screened for new inhibitors of GLUT1. We identified multiple hits from the rapafucin 3D microarray and confirmed one hit as a bona fide GLUT1 ligand, which we named rapaglutin A (RgA). We demonstrate that RgA is a potent inhibitor of GLUT1 as well as GLUT3 and GLUT4, with an IC50 value of low nanomolar for GLUT1. RgA was found to inhibit glucose uptake, leading to a decrease in cellular ATP synthesis, activation of AMP‐dependent kinase, inhibition of mTOR signaling, and induction of cell‐cycle arrest and apoptosis in cancer cells. Moreover, RgA was capable of inhibiting tumor xenografts in vivo without obvious side effects. RgA could thus be a new chemical tool to study GLUT function and a promising lead for developing anticancer drugs.  相似文献   

14.
Abstract

To discover novel structural compounds which are producted by endophytic fungi, a primary chemical profiling of Camptotheca acuminata Decne derived endophytic fungus Penicillum polonicum had been taken. Two new compounds β-lactone polonicin A (1) and enoic acid polonicin B (2) together with seven known compounds 3-9 were isolated from Penicillum polonicum obtained from C. acuminata. The structures of the new compounds 1 and 2 were identified by modern spectrum technology including detailed 1D, 2D NMR and MS data analyses. When tested against HepG2 hepatocellular carcinoma (HCC) cell lines, compounds 4-8 showed moderate anti-HCC activity. In addition, compound 1-3 have effects on increasing GLUT4 translocation and glucose uptake in vitro. Compound 1 showed the strongest glucose uptake and GLUT4 translocation activities in rat skeleton (L6) myoblast cell line with enhancements of 1.8 and 2.1 folds respectively compared to the control.  相似文献   

15.
16.
Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.  相似文献   

17.
In adipocytes, insulin stimulates glucose transport primarily by promoting the translocation of GLUT4 to the plasma membrane. Requirements for Ca(2+)/calmodulin during insulin-stimulated GLUT4 translocation have been demonstrated; however, the mechanism of action of Ca(2+) in this process is unknown. Recently, myosin II, whose function in non-muscle cells is primarily regulated by phosphorylation of its regulatory light chain by the Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK), was implicated in insulin-stimulated GLUT4 translocation. The present studies in 3T3-F442A adipocytes demonstrate the novel finding that insulin significantly increases phosphorylation of the myosin II RLC in a Ca(2+)-dependent manner. In addition, ML-7, a selective inhibitor of MLCK, as well as inhibitors of myosin II, such as blebbistatin and 2,3-butanedione monoxime, block insulin-stimulated GLUT4 translocation and subsequent glucose transport. Our studies suggest that MLCK may be a regulatory target of Ca(2+)/calmodulin and may play an important role in insulin-stimulated glucose transport in adipocytes.  相似文献   

18.
Cu(OTf)2 catalyzed synthesis of propargylated 2,3-dihydroquinazolin-4(1H)-ones has been accomplished from 2-amino-N-propargyl benzamides and aromatic aldehydes under MW irradiation. Next, a series of novel glycosyl triazolyl methyl quinazolin-4(3H)-ones have been synthesized by CuAAC reaction of propargylated 2,3-dihydroquinazolin-4(1H)-ones with glycosyl azides followed by iodine mediated oxidation. In this series, six compounds showed promising to significant GLUT4 translocation activity comparable to rosiglitazone.  相似文献   

19.
We have developed two novel 3-phenyl-3-trifluoromethyldiazirinyl bis-glucose derivatives to investigate the properties of the adipocyte glucose transporter GLUT4. These compounds were substituted by electron-withdrawing (iodo and nitro) groups on the aromatic ring of 3-phenyl-3-trifluoromethyldiazirine photophore and were found to be more photosensitive than compounds without such substituents. The compounds were used as inhibitors of insulin-stimulated glucose transport activity in order to assess half-maximal inhibition or relative affinity values for GLUT4. The affinities were found to be 60-130 times higher than the parent compound D-glucose. Because of the increased photo-reactivity and high affinity these compounds will be useful in studies directed at further elucidation of GLUT4 function.  相似文献   

20.
Biochemical and molecular basis of insulin resistance   总被引:3,自引:0,他引:3  
Insulin-resistance is a major problem associated with diabetes and that is increasing rapidly worldwide. Insulin is a peptide hormone secreted by the beta-cells of the pancreatic islets of Langerhans in response to increased circulating levels of glucose and amino acids and it is essential for appropriate tissue development, growth, and maintenance of whole-body glucose homeostasis by regulating carbohydrate, lipid and protein metabolism. Insulin resistance is a defect in signal transduction. The signaling mechanisms involved in the various biologic responses to insulin remain somewhat elusive. This review focuses on the structure and activity of insulin receptor, inheritance of insulin resistance, insulin receptor and alleles, enzyme activity in insulin resistance, insulin receptor in phosphorylation and relating substrate. We have discussed insulin receptor substrate-family (IRS) related to insulin resistance, detail downstream signaling effects, GLUT4 vesicle translocation and related events, cytokine-mediated insulin resistance, and feedback control mechanisms. This review also focuses on insulin resistance in obesity-linked metabolic syndrome, insulin resistance related to plasma membrane disturbances and insulin resistance for exercise and cellular integrity. Finally, we can conclude that insulin resistance is really a complex phenomenon in which several genetic defects combine with environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号