首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过检测蛋白质与金纳米粒子结合前后的zeta电位和荧光淬灭的变化,研究金纳米粒子和蛋白质,如牛血清白蛋白以及免疫球蛋白G之间在不同pH条件下的相互作用。当加入蛋白质后,金胶体溶液在透射电镜和紫外-可见分光光度计检测时有聚集的现象。实验结果表明,当pH值增大时,zeta电位变化很明显,而结合常数Kb和化学计量数n增加的趋势比较平缓。总之,有两个因子能明显地影响金纳米粒子和蛋白质之间的相互作用,那就是表面电荷以及金纳米粒子和蛋白质上面的色氨酸的吲哚环之间的共价作用。  相似文献   

2.
利用硼氢化钠还原法制备了金纳米粒子, 通过在其表面修饰链长不同的巯基羧酸, 得到了功能化纳米粒子. 利用荧光发射、紫外吸收和圆二色谱等手段研究了功能化金纳米粒子与蜂毒素分子之间的相互作用及其所诱导的蛋白质分子的构象变化. 研究结果表明, 功能化修饰的金纳米粒子可通过静电相互作用吸附蜂毒素(Melittin)并诱导其α-螺旋结构的形成, 且这种效应与巯基羧酸分子的链长直接相关.  相似文献   

3.
根据荧光染料在金纳米粒子表面的能量转移,本文建立了一种具有高灵敏和高选择性半胱氨酸分析方法.研究表明,通过静电作用吸附在柠檬酸根包被的金纳米粒子表面的阳离子荧光染料如罗丹明B分子在受光激发时,发生从荧光染料到金属纳米微粒的能量转移,导致荧光染料的荧光猝灭.但当体系中存在半胱氨酸时,由于半胱氨酸与金纳米粒子之间具有更强的共价作用,罗丹明B分子远离金纳米粒子表面,降低了能量转移效率,使得罗丹明B的荧光得到恢复.恢复的荧光强度与0.025~4.5μmol/L半胱氨酸呈很好的线性关系,检测限为8.0nmol/L(3σ),而其他十九种基本氨基酸的响应非常微弱.  相似文献   

4.
本文发展了一种基于离心技术的清洗金纳米八面体表面十六烷基三甲基溴化铵(CTAB)吸附物的有效方法.选择合适的离心转速和离心次数,可以驱除金纳米八面体表面的CTAB分子.通过热失重分析、表面增强拉曼光谱和傅里叶红外光谱表征可以推测,金纳米八面体经合适的离心清洗后,表面残留的少量CTAB分子通过疏水作用由烷基长链与金表面形成(亚)单层吸附,同时,与金表面有强相互作用的溴离子发生脱附.溶剂水对CTAB的稀释在离心清洗金纳米八面体表面的过程中发挥着重要作用.金纳米粒子在离心场中的高速运动导致粒子周围双电层发生极化,极化双电层内产生的局部液流引起双电层内物质交换从而也影响了金纳米八面体表面的清洗效果.金纳米八面体在硫酸溶液和碱性硝酸铅溶液中的电化学研究表明,经过离心清洗的金纳米八面体可以直接应用于单晶电化学研究.  相似文献   

5.
纳米金通过静电吸附抗体, 与寡核苷酸共价结合制备双标记纳米金生物探针, 比较了双标记纳米金生物探针和单标记抗体IgG或ss-DNA的稳定性和反应性. 结果表明, 在水溶液中纳米金由于ss-DNA的结合使IgG抗体的吸附能力明显改善, IgG的吸附也影响二硫苏糖醇(DDT)对ss-DNA的解离作用. 双标记纳米粒上覆盖(50±15)条ss-DNA和(10±2)条IgG, 较单标记ss-DNA纳米金上的(70±15)条要少. 斑点免疫和杂交实验证明, 纳米金表面标记的IgG和ss-DNA具有良好生物学活性. 双标记纳米金生物探针在超微量蛋白质的检测中具有应用价值.  相似文献   

6.
以细胞色素c(Cyt c)为模型蛋白,采用表面增强红外吸收光谱监测了三明治结构所吸附的纳米金对氧化还原诱导的Cyt c表面增强红外差谱的改变.研究表明,在单层Cyt c分子表面组装纳米金,使得血红素的红外差谱特征峰明显增强,这归因于纳米金和血红素之间的电子传递.纳米金与Cyt c氧化还原活性中心血红素的相互作用加速了蛋白质的电子传递.这为实现并优化表面吸附蛋白质的直接电化学提供了一种新技术.  相似文献   

7.
α-Al2O3纳米粒子对Co-Ni合金异常共沉积电化学行为的影响   总被引:1,自引:0,他引:1  
武刚  李宁  周德瑞  徐柏庆 《物理化学学报》2004,20(10):1226-1232
为了研究在电化学复合共沉积过程中,惰性纳米粒子和金属离子、电极表面的相互作用,以及由此产生的对合金电化学共沉积行为的影响.本文从两个吸附过程出发: 电解液中的金属离子和H+在纳米粒子表面的吸附;纳米粒子迁移到阴极表面,在电极表面的吸附.采用Zeta电势和稳态极化以及电化学交流阻抗(EIS)研究了纳米Al2O3粒子和电解液中的金属离子,和电极表面的相互作用,进而分析了纳米粒子对Co2+和Ni2+还原沉积的影响规律.通过对阻抗数据的拟合,讨论了Al2O3纳米粒子对等效电路中各物理参数的影响.在H+和不同金属离子在纳米粒子上发生竞争吸附的基础上,提出了纳米粒子和合金共沉积的可能反应历程.  相似文献   

8.
通过在具有长程有序结构的有机溶致液晶内嵌入预制的、表面性质可调控的银纳米粒子, 得到了亲水与亲油介观空间内同时嵌入纳米粒子的无机/有机杂合体. 掺杂前后液晶结构的变化和杂合体稳定性用小角X射线散射和偏振光学显微镜等进行了表征. 结果表明, 表面活性剂双层膜与导入纳米粒子间的立体化学匹配及相互作用是影响杂合体稳定性的重要因素.  相似文献   

9.
利用树枝状分子-金纳米粒子复合物修饰电极和金纳米粒子标记物构建电化学免疫传感器,用于污泥中大肠杆菌的检测.首先在玻碳电极表面电聚合对氨基苯甲酸,通过共价作用结合第Ⅳ代氨基末端的树枝状分子(G4-PAMAM),并在其内部载入金纳米粒子,制备修饰电极(GCE/p-ABA/PAMAM (AuNPs)),用于固定大肠杆菌.采用硫堇作为电活性物质包被金纳米粒子,用于标记二抗制备金纳米粒子标记物(Ab2-Au-Th).通过抗原-抗体之间的特异性识别作用,将一抗、金纳米粒子标记物依次修饰在电极表面,用差分脉冲伏安法测定硫堇产生的电流信号,实现对大肠杆菌的检测.在优化的实验条件下,响应电流与大肠杆菌浓度的对数在1.0×102~1.0×106 cfu/mL范围内呈线性关系,检出限为70 cfu/mL(S/N=3).利用本方法检测污水处理厂的不同污泥样品中的大肠杆菌,回收率为89.4%~ 105.8%.  相似文献   

10.
局域表面等离子体共振(LSPR)是一种由入射光(电磁场)与金属纳米粒子表面自由电子间相互作用产生的物理光学现象,其性质与纳米粒子的组成、尺寸、形状、粒子间距和周围介质折射率等因素有关.溶胶LSPR传感已被成功地应用于免疫分析以及DNA检测等方面.应用聚电解质作为自组装材料,通过静电相互作用,将金纳米粒子组装于玻璃基片上制备LSPR传感膜.此种方法制备的LSPR传感膜中金纳米粒子的单分散性好,制备过程简单、组装时间短.同时,应用紫外.可见分光光度计进行检测,实验操作更加简便.  相似文献   

11.
Gold nanoparticles exhibit unique spectral properties that make them ideal for biosensing, imaging, drug delivery, and other therapeutic applications. Interaction of gold nanoparticles within biological environments is dependent on surface characteristics, which may rely on particular capping agents. In this study, gold nanospheres (GNS) synthesized with different capping agents??specifically citric acid (CA) and tannic acid (TA)??were compared for serum protein adsorption and cellular uptake into a lung epithelial cell line (A549). Both GNS samples exhibited noticeable protein adsorption based on surface charge data after exposure to serum proteins. Light scattering measurements revealed that GNS-CA-protein composites were smaller and less dense compared to GNS-TA-protein composites. The cell uptake characteristics of these nanoparticles were also different. GNS-CA formed large clusters and elicited high uptake, while GNS-TA were taken up as discrete particles, possibly through nonendosomal mechanisms. These results indicate that the capping agents used for GNS synthesis result in unique biological interactions.  相似文献   

12.
报道了金纳米微粒(Au NP)修饰毛细管电泳分离蛋白质的方法.采用物理吸附法将Au NP修饰在熔融石英毛细管内表面,制备成Au NP修饰毛细管.探讨了修饰剂Au NP的浓度对电渗流及蛋白质分离的影响.结果表明,Au NP修饰的毛细管能有效地抑制电渗流及蛋白质在毛细管内壁上的吸附,提高分离效率.在优化的实验条件下,实现了...  相似文献   

13.
Gold nanoparticles are potentially very attractive components for therapeutic delivery since they can be synthesized with any diameter from 1 to 200 nm to carry a payload of therapeutic molecules into a cell without triggering an immune response. Gold nanoparticles must undergo surface transformations before coupling to therapeutic molecules to become eligible for this purpose. It is now more understood that amine groups can bind to gold nanoparticles strongly, which has enabled surface modification of gold nanoparticles with amino acid lysine through its amine group. These lysine capped gold nanoparticles can further be coupled to therapeutic molecules for delivery purposes. In this study gold nanoparticles were first synthesized and capped with lysine molecules. TEM and FTIR measurements demonstrated the synthesis of lysine-capped gold nanoparticles with an average diameter of 10 nanometers. Interferon alpha molecules-one of the most important therapeutic protein were then chemically bound to lysine-capped gold nanoparticles through a two-step process of diimide-activated amidation. The conjugation of interferon molecules to lysine capped gold nanoparticles was carried out via the reaction between the free amine group of lysine and carboxyl groups of interferon using N-ethyl-N′-13-dimethyl-aminopropyl (EDAC) as a coupling agent. The process of conjugation has also been studied by transmission electron microscopy.  相似文献   

14.
In this work, an online preparation of peroxymonocarbonate was formed innovatively, which offered the reliable intermediate for further investigation. Gold colloids with nanoparticles of different sizes were found to enhance the chemiluminescence (CL) of the peroxymonocarbonate-eosin Y system, and the most intensive CL signals were obtained with 50 +/- 1 nm diameter gold nanoparticles. UV-visible adsorption spectra, fluorescence spectra, transmission electron microscopy images, electron paramagnetic resonance spin-trapping spectra, and mass spectra were obtained in order to study the CL enhancement mechanism. Peroxymonocarbonate, a reactive oxygen species, can be decomposed to singlet oxygen which transfers its energy to eosin Y. The CL can be induced by excited eosin Y. Gold nanoparticles facilitated the radical generation and singlet oxygen molecular formation on the surface of the gold nanoparticles. Thus, the CL emission enhanced greatly by adding gold nanoparticles into the system.  相似文献   

15.
pH regulates many cellular processes and is also an indicator of disease progression. Therefore, pH-responsive materials often serve as either tools in the fundamental understanding of cell biology or medicine for disease diagnosis and therapy. While gold nanoparticles have broad biomedical applications, very few of them exhibit pH-dependent interactions with live cells in a native biological environment due to nonspecific serum protein adsorption. Herein, we report that by coating luminescent gold nanoparticles with a natural peptide, glutathione, and the simplest stable aminothiol, cysteamine, we enabled the nanoparticles to exhibit not only high resistance to serum protein adsorption but also pH-dependent adsorption onto live cell membranes in the presence of serum proteins. Incorporating this pH-dependent membrane adsorption behavior into gold nanoparticles could potentially catalyze new biomedical applications of metal nanoparticles in the fundamental understanding of biological processes as well as disease diagnosis and therapy, where pH changes are involved.  相似文献   

16.
The interaction between DNA and inorganic surfaces has attracted intense research interest, as a detailed understanding of adsorption and desorption is required for DNA microarray optimization, biosensor development, and nanoparticle functionalization. One of the most commonly studied surfaces is gold due to its unique optical and electric properties. Through various surface science tools, it was found that thiolated DNA can interact with gold not only via the thiol group but also through the DNA bases. Most of the previous work has been performed with planar gold surfaces. However, knowledge gained from planar gold may not be directly applicable to gold nanoparticles (AuNPs) for several reasons. First, DNA adsorption affinity is a function of AuNP size. Second, DNA may interact with AuNPs differently due to the high curvature. Finally, the colloidal stability of AuNPs confines salt concentration, whereas there is no such limit for planar gold. In addition to gold, graphene oxide (GO) has emerged as a new material for interfacing with DNA. GO and AuNPs share many similar properties for DNA adsorption; both have negatively charged surfaces but can still strongly adsorb DNA, and both are excellent fluorescence quenchers. Similar analytical and biomedical applications have been demonstrated with these two surfaces. The nature of the attractive force however, is different for each of these. DNA adsorption on AuNPs occurs via specific chemical interactions but adsorption on GO occurs via aromatic stacking and hydrophobic interactions. Herein, we summarize the recent developments in studying non-thiolated DNA adsorption and desorption as a function of salt, pH, temperature and DNA secondary structures. Potential future directions and applications are also discussed.  相似文献   

17.
《Chemical physics letters》2003,367(5-6):747-752
Gold nanoparticles were self-assembled onto the surface of solubilized carbon nanotubes through an interlinker of bi-functionalized molecule (PHT) terminated with pyrenyl unit at one end and thiol group at the other end. While the fluorescence of PHT is quenched moderately by the carbon nanotubes, the fluorescence is almost totally quenched by the further binding of gold nanoparticles. The enhancement of the Raman responses of nanotubes by the gold nanoparticles is also observed. These results imply there are charge transfer interactions between nanotubes and gold nanoparticles.  相似文献   

18.
Polyethylene glycol (PEG) surface conjugations are widely employed to render passivating properties to nanoparticles in biological applications. The benefits of surface passivation by PEG are reduced protein adsorption, diminished non-specific interactions, and improvement in pharmacokinetics. However, the limitations of PEG passivation remain an active area of research, and recent examples from the literature demonstrate how PEG passivation can fail. Here, we study the adsorption amount of biomolecules to PEGylated gold nanoparticles (AuNPs), focusing on how different protein properties influence binding. The AuNPs are PEGylated with three different sizes of conjugated PEG chains, and we examine interactions with proteins of different sizes, charges, and surface cysteine content. The experiments are carried out in vitro at physiologically relevant timescales to obtain the adsorption amounts and rates of each biomolecule on AuNP-PEGs of varying compositions. Our findings are relevant in understanding how protein size and the surface cysteine content affect binding, and our work reveals that cysteine residues can dramatically increase adsorption rates on PEGylated AuNPs. Moreover, shorter chain PEG molecules passivate the AuNP surface more effectively against all protein types.  相似文献   

19.
Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its "synthetic identity", are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct "biological identity". Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials.  相似文献   

20.
Functionalization of gold nanoparticles is crucial for the effective utilization of these materials in health-related applications. Health-related applications of gold nanoparticles rely on the physical and chemical reactions between molecules and gold nanoparticles. Surface chemistry can precisely control and tailor the surface properties of gold nanoparticles to meet the needs of applications. Gold nanoparticles have unique physical and chemical properties, and have been used in a broad range of applications from prophylaxis to diagnosis and treatment. The surface chemistry of gold nanoparticles plays a crucial role in all of these applications. This minireview summarizes these applications from the perspective of surface chemistry and explores how surface chemistry improves and imparts new properties to gold nanoparticles for these applications.

Functionalization of gold nanoparticles is crucial for the effective utilization of these materials in health-related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号