首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
王媛  张彭义 《化学进展》2010,22(1):210-219
全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)是人工合成全氟化合物的典型代表。近年来,大量的环境调查数据表明它们普遍存在于多种环境介质、生物体甚至人体中,呈现出全球分布的态势,具有环境持久性和生物富集性,对人体健康存在潜在的危害,已成为一类新的环境持久性有机污染物而引起人们广泛的关注。本文介绍了PFOA和PFOS的环境来源和传输途径,解析了人体暴露的三种主要途径以及在食物、饮用水和空气/灰尘中的污染现状,并就围绕着它们所开展的污染控制技术方面的研究进行了评述。在此基础上,通过分析目前研究中所存在的问题,对今后的发展方向和研究重点进行了展望。  相似文献   

2.
沙敏  张丁  潘仁明  邢萍  姜标 《化学学报》2015,73(5):395-402
全氟辛酸/全氟辛基磺酸(PFOA/PFOS)类氟表面活性剂因不易被生物降解且对环境有毒害作用, 被列为持久性有机污染物. 采用引入氟碳支链的策略作为PFOA/PFOS替代物的研发取向, 以六氟丙烯二聚体为原料合成了新型阳离子型、两性型、双子型和非离子型氟表面活性剂, 并对它们的表面活性和急性毒性性能进行了测试. 结果表明, 所合成的支链型表面活性剂表面活性高且毒性低. 因此, 基于六氟丙烯二聚体(HFPD)合成PFOS/PFOA替代物是一种简单、经济且环保的方法.  相似文献   

3.
王媛  石晓燕 《化学学报》2014,(6):682-688
以全氟辛酸(PFOA)为代表的全氟化合物是环境水体中新出现的一类持久性有机污染物,Fe3+的存在促进了其在254 nm紫外光下的有效降解.在此基础上,主要考察了溶液初始pH值对Fe3+诱导PFOA光化学降解的影响,并以全氟丁酸(PFBA)、全氟戊酸(PFPeA)、全氟己酸(PFHxA)和全氟庚酸(PFHpA)为对象,研究了Fe3+诱导短链全氟羧酸(PFCAs)的降解,通过对降解中间产物的分析,进而推断了其降解机理.结果表明,强酸性条件有利于PFOA的降解,弱酸性或中性反应条件下,PFOA的降解和脱氟均受到明显地抑制,进一步证实PFOA的降解主要是溶解性铁作用的结果,此时Fe(OH)2+则是铁(III)-羟基配合物的主要分配形态.Fe3+诱导PFCAs的降解表明:当碳原子数大于5,长链的PFCAs更易于降解,但对于碳原子数小于6的PFCAs,其降解没有明显的规律.降解中间产物主要是链更短的PFCAs,由此推断,PFCAs的降解遵循逐级降解的规律.  相似文献   

4.
全氟辛酸(perfluorooctanoic acid,PFOA)是一种强酸[1],分子式为C8HF15O2,是常用的氟表面活性剂,具有很强的疏水性和疏油性,广泛用于油库、机场、军事设施等场所的消防材料中,也是氟涂料、氟塑料和有机氟织物整理剂等的生产过程中不可缺少的原料。全氟辛酸具有中等毒性的肝致癌  相似文献   

5.
全氟和多氟化合物环境问题研究   总被引:1,自引:0,他引:1  
史亚利  蔡亚岐 《化学进展》2014,26(4):665-681
全氟和多氟化合物(PFASs)是一类具有重要应用价值的含氟有机化合物,许多全氟和多氟化合物难以光解、水解和被生物降解,因此具有环境持久性,并可沿食物链累积放大。2009年5月9日,全氟辛烷磺酸(PFOS)及其盐和全氟辛烷磺酰氟被正式列入持久性有机污染物(POPs)名单,由此全氟和多氟化合物成为近年最受关注的新型污染物,其环境问题研究进入到了新的广度和深度。本文将就其分析方法、环境存在、生物累积放大效应、人体暴露和健康效应、新型全氟和多氟化合物等方面的研究,特别是2009年PFOS等被纳入POPs公约以来取得的研究新进展,进行较为全面的综述,并在此基础上对有关发展趋势进行展望。  相似文献   

6.
全氟辛酸(PFOA)紫外光化学降解特性与机理   总被引:2,自引:0,他引:2  
全氟辛酸(PFOA)因其在环境介质中的稳定性、持久性和生物累积性,常规方法很难将其降解,或必须付出昂贵的代价.近几年,一些研究者利用紫外光化学降解环境介质中的PFOA,显示出了优良的应用前景.本文结合国内外研究者近年来的工作,介绍了紫外光化学降解PFOA的原理与特性,对各体系中关键介质的作用与机理进行了讨论,针对紫外光化学降解PFOA存在的问题提出了见解,并对该领域研究的趋势进行了展望.  相似文献   

7.
单国强  余梦琪  虞盛松  祝凌燕 《色谱》2014,32(9):942-947
介绍了一种可用于环境污染物全氟辛酸(PFOA)检测的高效液相色谱/紫外检测(HPLC/UV)分析方法。首先选用3,4-二氯苯胺为衍生化试剂,利用碳二亚胺法合成PFOA的酰胺化衍生产物(其在255 nm处紫外吸收最大)。然后确定四氢呋喃或水相介质中mg/L水平PFOA的衍生化条件及薄层硅胶色谱净化步骤。建立柱前衍生-HPLC/UV方法,以合成的全氟辛酸-3,4-二氯苯酰胺为对照品,外标法定量,PFOA上机测定的定量限为0.5 mg/L。通过加标回收试验评价方法的准确性,其中有机相及水相衍生法的回收率分别为91.8%~108.7%及40.1%~53.7%。与已报道的柱前衍生-HPLC/UV方法比较,本方法具有反应条件温和、衍生产物稳定、原料廉价易得、操作简单、成本低等优点。将本方法应用于光催化降解研究中PFOA的降解动力学实验,结果与液相色谱-质谱联用方法(LC/MS)的结果一致,说明本方法具有较好的应用前景。  相似文献   

8.
全氟辛酸(PFOA)是一种人工合成的化学品,广泛应用于油库、机场、军事设施等场所的消防材料中,也是氟塑料、氟橡胶和有机氟织物整理剂等生产过程中不可缺少的原料[1]。PFOA是具有中等毒性的肝致癌物,可增加人类患癌的风险,由于其化学惰性及其广泛的生产及使用,已造成严重的环境累积及污染[1]。当前,一些食品接触材料中会使用含氟聚合物,较常见的如不粘锅的含氟涂层,具有独特的耐热、耐低温、自润滑及化学稳定性等特点[2]。其中  相似文献   

9.
全氟和多氟化合物,特别是全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)对多个国家和地区的水资源造成了污染。目前这类有机污染物处理技术在成本和效率方面存在的局限性,促使人们开发更高选择性和高亲和力的吸附剂。近期,复旦大学陈茂研究员团队报道了一种通过可见光催化的无金属串联光控自由基聚合得到的多氟纳米颗粒镶嵌的水凝胶吸附剂。这种吸附剂材料对于各种电性的全氟或多氟化小分子均表现出了优异的吸附性能,且在没有明显性能损耗的基础上可完成5次以上的吸附-解吸附循环。该方法为去除水中的PFOA、PFOS等全氟或多氟化小分子提供了新策略。  相似文献   

10.
全氟化合物的环境问题   总被引:7,自引:0,他引:7  
全氟化合物是一类新型有机污染物,它具有疏油、疏水特性,在环境中可以长期稳定存在,其环境污染问题已经引起了人们的广泛关注,其研究也已成为近年环境科学和分析化学的热点.但我国的研究还较少,并缺乏环境污染方面的系统性数据.本文介绍了全氟化合物的毒理效应、污染特点、污染现状和环境行为及环境修复等方面的内容,讨论了目前存在的问题,为我国全氟化合物环境污染研究提供相应参考.  相似文献   

11.
王利兵  吕刚  冯智劼  赵好力宝 《色谱》2007,25(1):115-115
全氟辛酸(PFOA)具有中等毒性的肝致癌性,并会影响生物体脂类物质的代谢及抑制生物体的免疫系统功能。本文对包装材料中PFOA及其盐类进行检测,所建立的方法可对包装材料的安全性评价提供技术支撑。  相似文献   

12.
北京城区降雪中全氟化合物的污染水平   总被引:3,自引:0,他引:3  
通过检测北京城区降雪中16种全氟化合物的浓度,考察了北京地区大气中全氟化合物的污染状况.2009年11月10日,在城区采集了共计43个地点的雪样.降雪中全氟化合物的平均总浓度范围为0.47~7.94ng/L.其中全氟庚酸(PFHpA)、全氟辛酸(PFOA)、全氟壬酸(PFOS)、全氟癸酸(PFNA)的检出率均接近100%.PFOA是最主要的全氟化合物,平均浓度为0.85ng/L.通过分析数据,发现南城雪样中的全氟化合物总浓度要明显高于北城地区.  相似文献   

13.
以蚯蚓(Eisenia fetida)为受试生物,研究了8:2和10:2氟调醇(FTOH)在蚯蚓体内的生物富集特性、清除速率和生物转化等.结果表明,全氟辛酸(PFOA)是8:2 FTOH主要的末端降解产物,全氟癸酸(PFDA)是10:2 FTOH主要的末端降解产物.暴露30 d后,蚯蚓体内的全氟化合物浓度达到最高,分别为PFDA(565 ng/g)8:2 FTOH(505 ng/g)PFOA(179 ng/g)10:2 FTOH(148 ng/g).清除阶段8:2 FTOH,10:2 FTOH,PFOA和PFDA半衰期(t1/2)分别为23.1 d,16.5 d,5.8 d和11.4 d,其对应的清除速率常数(ke)分别为0.03/d,0.042/d,0.12/d,0.061/d,说明长碳链的PFCAs更难从生物体内清除,母体化合物FTOHs在蚯蚓体内的持久性更强.  相似文献   

14.
环境持久性自由基(environmentally persistent free radicals, EPFRs)是一类新的环境有害污染物,具有环境持久性和潜在毒性,能够造成机体DNA损伤.目前国内外对EPFRs的环境污染特征、来源及生成机理等的研究还处于起步阶段,对EPFRs的毒性效应和风险控制研究有待深入.本文首先简要总结了EPFRs的毒性、分析方法和环境污染特征,重点讨论了EPFRs的产生机制和关键影响因素,提出研究EPFRs与二噁英等有机污染物生成的相关关系的重要性,展望了未来对于EPFRs的研究方向.  相似文献   

15.
全氟羧酸盐海洋微表层富集与影响因素分析   总被引:3,自引:0,他引:3  
通过环境调查和表面张力测定实验,观察了全氟辛酸盐(PFOA)和全氟寅酸盐(PFNA)在海洋微表层中的富集现象,探讨了污染物浓度、温度、盐度等热力学因素对PFOA海水表面富集的影响趋势.利用钢丝网法采集的黄海北部开阔海域微表层中(厚约200μm),PFOA和PFNA的浓度分别为1.92~17.66ng/L和0.40~9.30ng/L,几何均值为4-27和1.38ng/L;微表层富集系数的几何均值为2.5(1.0~17)和8.2(2.1-42).微表层中PFNA与PFOA浓度比值几何均值为0.33,显著不同于次表层海水中的组成比例(0.10).海洋表层水温度和盐度是影响全氟表面活性剂微表层富集状态的主要热力学因素.温度增高时,微表层富集系数随之降低;盐度增加时,富集系数随之增加.  相似文献   

16.
建立了超声波辅助萃取-气相色谱-微电子捕获检测器测定纺织品中全氟辛酸(PFOA)及全氟辛磺酰基化合物(PFOS)的方法。通过单因子选择实验、正交实验等方法建立了纺织品中PFOA和PFOS的超声波萃取方法和PFOA的衍生反应条件。并采用加大流速和降低温度的方法,实现了3种PFOA和PFOS混合物的气相色谱分离及测试。方法的检测限为0.00591~0.02319μg/g;精密度为2.1%~9.7%;加标回收率为92.2%~101.9%。方法适用于纺织品中痕量PFOA和PFOS的监测分析。  相似文献   

17.
张峰振  吴超飞  胡芸  韦朝海 《化学进展》2014,26(6):1079-1098
包括全氟或部分氟代化合物(PFCs)、氯代有机物(COCs)以及溴代有机物(BOCs)等的卤代有机污染物(halogenated organic contaminants,HOCs)排放到环境中会表现出持久性有机污染物的特征,因此涉及HOCs性质、光吸收与量子效应、材料与界面特性、环境条件等方面优化的光化学清除方法成为一个重要的研究方向。基于此,本文归纳分析了光激发催化剂产生活性物种如hVB+、eCB-、 ·OH、eaq-等氧化或还原全氟辛酸、多氯联苯、多溴联苯醚的反应机理及直接光解机理,指出HOCs的光化学降解主要是通过其与活性物种之间电子转移或其激发态光致还原脱卤来实现,认为光催化材料和反应过程优化设计是影响光催化降解HOCs的重要因素。基于目前已经取得的研究发现与成果,从界面电子转移、材料能带信息、反应与分离集成化等方面提出本领域未来学术与技术层面值得深入探索的关键问题。  相似文献   

18.
持久性有机污染物(Persistent Organic Pollutants,POPs)所引起的环境污染问题是影响世界环境安全的重要因素~([1,2]).研究表明,POPs污染的严重性和复杂性远远超过常规环境污染物,很多POPs不仅具有致癌、致畸、致突变性,而且还具有内分泌干扰效应,直接威胁野生动物甚至人类的生存和繁衍~([3]).其危害具有隐蔽性和突发性特点,已成为所谓的"化学定时炸弹",一旦发生重大污染事件或出现恶性病变,会产生灾难性后果,严重影响经济和社会的稳定.苯并芘等多环芳烃是持久性环境有机污染物(POPs)的一种.  相似文献   

19.
全氟辛基磺酸(PFOS)类化合物是一类新型的持久性有机污染物,所造成的污染已成为全球关注的问题.高效液相色谱-质谱(HPLC-MS)联用技术在痕量分析中的显著优势被广泛应用于PFOS类化合物的分析.论述了近年来HPLC-MS在检测环境、工业品、食品及生物中PFOS类化合物的应用现状.  相似文献   

20.
采用HPLC-ESI-MS/MS联用技术,以C18反相柱为分析柱,以甲醇、醋酸铵为淋洗液,10min即可分离全氟庚酸(PFHeA)、全氟辛酸(PFOA)、全氟辛烷磺酸(PFOS)、全氟壬酸(PFNA)和全氟癸酸(PFDeA)5种全氟化合物。样品溶液500mL经RP柱离线浓缩、2mL甲醇洗脱、水定容至5mL后,50μL进样分析。以363/319、412.9/368.9、498.9/80、462.9/419和512.8/469离子对分别对PFHeA,PFOA,PFOS,PFNA和PFDeA进行监控和定量检测。线性范围在0.5~20ng/L之间(r≥0.9944),5种物质的检出限依次为0.10、0.15、0.11、0.11和0.18ng/L。该方法已成功运用于4种环境水样的测定,4ng/L的加标回收结果在52.6%~117.5%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号