首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.  相似文献   

2.
<正>A novel potentiometric detection strategy based on functionalized magnetic nanoparticles has been developed for rapid and sensitive sensing of polyions.Highly dispersed magnetic nanoparticles coated with ion exchanger and plasticizer could promote an in situ cooperative ion-pairing interaction between the ion exchanger and the polyion analyte in sample solution by dramatically reducing the mass-transfer distance.With applying a magnetic field,the nanoparticles can be attached to the surface of ion exchanger free polymeric membrane.The observed potential signals are related to the polyion concentrations.The proposed polymeric membrane electrode exhibits a linear relationship between the greatest potential response slope(dE/dt) and the logarithm of protamine concentration in the range of 0.05-5μg/mL with a lower detection limit of 0.033μg/mL.  相似文献   

3.
Fu  Youxin  Zhang  Xing  Cao  Feng  Wang  Wenhui  Qian  Guangren  Zhang  Junji 《中国科学:化学(英文版)》2019,62(9):1204-1212
Photochromic molecules can achieve reversible isomerization upon alternate light irradiations, which offers a great opportunity to improve the precision of analytes detection and imaging in complicated biological environments. Previous reported photochromic probe exhibited only mono-color switching and an initially fluorescence-ON state that may cause high background signal and impose an adverse impact on the desired sensing precision. To overcome this set-back, we developed a novel photochromic probe with an analyte-activation mode for ratiometric sensing of toxic thiols in both real water samples and live cells. The dynamic dual-fluorescence signal is released only after the fast and selective cleavage of the 2,4-dinitrophenyl sulfonate by the targeted thiophenol derivatives. Consequently, a "double-check" with synchronized dual-fluorescence blinking for analyte detection is successfully employed upon alternate light triggers with rapid response(k=7.2×10~(-2) s~(-1)), high sensitivity(LOD=6.1 nM) as well as selectivity of thiophenol derivatives over other common thiol species(e.g., GSH, Cys and Hcy). The photochromic probe was successfully introduced to the fast and on-site detection of highly toxic thiophenols in real waste water samples. Moreover, by using confocal laser-scanning microscopy(CLSM) and flow cytometric analysis, the potential applications of this ratiometric photochromic probe for trace toxic thiol sensing in live cells are examined.  相似文献   

4.
A double magnetic separation-assisted fluorescence method was developed to rapidly detect ochratoxin A(OTA). The OTA aptamer functionalized magnetic nanomaterial(Fe3O4-Aptanier) and complementary DNA conjugated nitrogen-doped graphene quantum dots(NGQDs-cDNA) were used in this assay. Aptamer could hybridize with cDNA, which induced tlie NGQDs-cDNA to bind onto Fe3O4-Aptamer, and resulted in the fluorescence quenching of NGQDs. After the addition of OTA, the NGQDs-cDNA could release into the solution, and resulted in the recovery of fluorescence signal of NGQDs consequently. By utilizing the magnetic separation, the unbonded NGQDs-cDNA and residual Fe3O4-Aptamer were removed, which significantly increased the fluorescence signal intensity. OTA could be detected in the linear range of 10 nmol/L to 2000 nmol/L, with a limit of detection as 0.66 mnol/L. The advantages of this method include simple operation, good selectivity and high sensitivity, and this method can be used for the rapid detection of ochratoxin A in wheat and com.  相似文献   

5.
A method using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry with selected ion monitoring (GC–MS, SIM) has been developed for the determination of trace amounts of anthracene in sea water, wastewater, honey and saliva samples. Anthracene was extracted on to a fused-silica fibre coated with 85 μm polyacrylate (PA). Quantification of anthracene was carried out by isotope dilution mass spectrometry. The detection limit and the quantification limit found were 0.02 and 0.06 ng mL−1, respectively. The method was validated by analysis of spiked matrix samples and used to investigate the presence of anthracene above the stated detection limit in sea water, wastewater, honey and saliva samples.  相似文献   

6.
A novel fluorescent probe HMQC was synthesized for HSOf detection by coupling flavonoid derivatives with 3-quinoline salt. In PBS buffer solution, the probe showed high selectivity, good sensitivity (58 nmol/L) and rapid response (150 s) for the detection of HSO3−. The possible sensing mechanism of the probe was discussed by nuclear magnetic hydrogen spectroscopy, mass spectrometry and theoretical calculation, indicating that the addition reaction between HSO3− and the C=C bond of the probe led to the fluorescence enhancement. The probe HMQC could be used for the detection of HSO3− in living cells, making it to be a promising tool for delecting HSO3−. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

7.
In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing DNA on Au nanoparticles and a self-assembled monolayer of cysteamine modified Au electrode. The assembly processes of cysteamine, Au nanoparticles and DNA were characterized by cyclic voltammetry (CV). The Au nanoparticles enhanced DNA immobilization resulting in an increased guanine signal. The interaction of the analyte with the immobilized DNA was measured through the variation of the electrochemical signal of guanine by square wave voltammetry (SWV). The biosensor was able to detect the known genotoxic compounds: 2-anthramine, acridine orange and 2- naphthylamine with detection limits of 2, 3 and 50 nmol/L, respectively. The biosensor was also used to test actual water samples to evaluate the contamination level. Additionally, the comparison of results from the classical genotoxiciw bioassay has confirmed the applicability of the method for real samoles.  相似文献   

8.
The residues of organophosphorus pesticide(OPs)on fruits and vegetables pose a threat to human health,so it is very meaningful to explore simple and fast detect methods for OPs residual.In this work,nickel ferrite/nickel oxide nanoparticles co-loaded three-dimensional reduced graphene oxide(3DRGONiFe2O4/NiO NPs),as a new low cost nanocomposite,was prepared.Based on its high performance mimetic peroxidase activity,a colorimetric method for the detection of OPs has been developed.Dichlorvos was chosen as model compounds to evaluate the detection performance.The detection linear range for dichlorvos is from 50μg/mL to 2.5×10^4μg/mL with a detection limit of 10μg/mL.Furthermore,a test paper can be developed based on the 3 DRGO-NiFe2O4/NiO NPs for visual detection of dichlorvos,and the image information of the paper sensor can be converted into digital signal and quantitative detection by a smartphone.Notably,this method can also be used to detect dichlorvos in real samples,including vegetables and fruits.Thus,the developed naked assay holds great potential in simple,inexpensive and rapid detection of OPs in fruit and vegetable samples.  相似文献   

9.
Cysteine(Cys)plays a pivotal role in many physiological and pathological processes,including detoxification and protein synthesis.The abnormal levels of Cys are linked to many diseases.In this study,a novel red-emitting off-on fluorescent probe Cys-TCF was masterly constructed for discriminative detection of Cys.After a series of experimental assessment,Cys-TCF displayed higher selectivity and sensitivity for Cys over other biothilols with a low detection limit(0.04μmol/L).More notably,the probe was also successfully applied to image Cys in live cells and live zebrafishes with low cytotoxicity.  相似文献   

10.
The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples.  相似文献   

11.
A simple and sensitive platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene)nanocomposite(PtNPs/PEDOT-MeOH) modified glassy carbon electrode(GCE) was successfully developed for the electrochemical determination of quercetin.Scanning electron microscopy and energy dispersive X-ray spectroscopy results indicated that the PtNPs were inserted into the PEDOTMeOH layer.Compared with the bare GCE and poly(3,4-ethylenedioxythiophene)(PEDOT) electrodes,the PtNPs/PEDOT-MeOH/GCE modified electrode exhibited a higher electrocatalytic ability toward the oxidation of quercetin due to the synergic effects of the electrocatalytic activity and strong adsorption ability of PtNPs together with the good water solubility and high conductivity of PEDOT-MeOH.The electrochemical sensor can be applied to the quantification of quercetin with a linear range covering0.04-91 μmol L~(-1) and a low detection limit of 5.2 nmol L~(-1).Furthermore,the modified electrode also exhibited good reproducibility and long-term stability,as well as high selectivity.  相似文献   

12.
A hybrid membrane consisted of aminated graphene and Ag nanoparticles(Ag NPs) was prepared on the surface of glassy carbon electrode(GCE) by cyclic voltammetry(CV) with aminated graphene(GR-NH2) as matrix for immobilizing Ag NPs.The morphology and electrochemical properties of this hybrid membrane were characterized by scanning electron microscopy(SEM) and CV,respectively,and on this membrane,the voltammetric behaviors of epinephrine(EP) were studied in detail.The membrane exhibited excellent eletro-catalytic activities for the redox of EP,and could resolve the electrochemical response of EP and uric acid(UA) into two oxidation peaks.The peak current of EP was linear with its concentration in the ranges of 0.916-18.3 μmol/L and 18.3-184 μmol/L.The detection limit was 2.0 nmol/L(S/N=3).The proposed modified electrode retained the advantages of easy fabrication,high sensitivity and good repeatability for the determination of EP.  相似文献   

13.
A kind of 9 nm gold nanoparticles was prepared with the trisodium citrate and used to label goat anti-human IgG to obtain an IgG immunoresonance scattering spectral probe. In pH 5.8 buffer solution and in the presence of polyethylene glycol (PEG), the immune reaction between gold-labeled goat anti-human IgG and IgG took place, and the resonance scattering intensity at 580 nm (I580nm) was enhanced greatly. The enhanced intensity AIRS is pro- portional to the IgG concentration from 1.3 to 1.5 X 10^3 ng.mL^-1, with a detection limit of 0.78 ng.mL ^-1. This assay showed high sensitivity and good selectivity for quantitative determination of IgG in human serum, with satisfactory results.  相似文献   

14.
Gold nanoparticles functionalized hollow mesoporous Prussian blue nanoparticles(Au@HMPB NPs)were synthesized and its peroxidase-like activity was explored for electrochemical probe.The Au@HMPB NPs can reduce H2O2 low detection potential of-0.1 V with high sensitivity.After physically adsorption of antibodies onto the gold nanoparticle surface,the functionalized nanoparticles were turned into immuno-probe.The soluble a-chain of interleukin-2(IL-2)receptor(sCD25)was chosen as a model protein biomarker to test the performance of the probe.sCD25 in the samples were captured and enriched by capture anti-CD25 antibody functionalized magnetic nanospheres.Detection antibody functionalized Au@HMPB can then be linked onto the nanospheres and generate electrochemical current towards H2O2 reduction.The electrochemical responses to 1 mmol/L H2O2 was increased with the increasing concentration of CD25.  相似文献   

15.
A PVC membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) as ionophor was prepared.The ion selective electrode was tested by inorganic anions and showed a good selectivity for iodide ion.This sensor exhibited Nernstian behavior with a slope of—57.8 mV per decade at 25℃.The proposed electrode showed a linear range from 1.0×105 to 1.0×10-1 mol/L with a detection limit of 5.0×10-6 mol/L.The electrode response was independent of pH in the range of 3.0- 10.0.The proposed sensor was applied to determine the iodide in water and antiseptic samples.  相似文献   

16.
A novel simple immunosensing strategy for fabrication of hepatitis B surface antigen detection has been developed via electrochemical impedance spectroscopy (EIS) as a platform. At first, the conductive polymer polypyrrole (PPy) film was electrodeposited on a platinum electrode surface to adsorb the gold nanoparticles (nano-Au) via the opposite-charged adsorption technique, and then hepatitis B surface antibodies were adsorbed onto the surface of nano-Au. The modification procedure was characterized by EIS. Such spectroscopy is attributed to the concomitant conductivity changes of the polymerized pyrrole film and gold nanoparticles. The factors influencing the performance of resulting immunoelectrode were studied in detail. The linear range of the resulting immunoelectrode is from 2.6 to 153.6 ng.mL^-1 with a detection limit of 1.3 ng·mL^-1 at 3σ. In addition, the experiment results indicate that antibody immobilized on this way exhibits a good sensitivity, selectivity, high stability and a long-term maintenance of bioactivity, implying a great promising alternative approach for reagentless immunosensing analysis in the clinical diagnosis.  相似文献   

17.
王文栋  李在均 《应用化学》2022,39(8):1285-1293
The histidine functionalized graphene quantum dots(His-GQDs)react with ruthenium trichloride to form a stable ruthenium complex. This complex is treated in a N2 atmosphere at 600 ℃ for 1 h to obtain a ruthenium-graphene quantum dot composite (Ru-His-GQD). The results of scanning electron microscopy (SEM)and transmission electron microscopy(TEM)analysis demonstrate that Ru-His-GOD has one three-dimensional structure. The diameter of ruthenium nanoparticles is between 40 and 60 nm. Ru-His-GQD is rich in functional groups and has high oxidase-like activity. Based on Ru-His-GQD catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine(TMB)to produce blue compounds,a photometric method for the determination of phoxim in carrots is established. Phoxim can inhibit the activity of Ru-His-GQD oxidase,resulting in a decrease in the absorbance of the blue compound. When the concentration of phoxim is between 30~240 μg/ L,the absorbance of the oxidation product of TMB at 652 nm decreases linearly with the increase of phoxim concentration. The detection limit of the method reaches 7. 33 μg/L(S/N=3),and the sensitivity is higher than those in literature. It has been successfully applied to the detection of phoxim in carrots. © 2022, Science Press (China). All rights reserved.  相似文献   

18.
The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.  相似文献   

19.
Nowadays, the rapid and effective detection of low doses of heavy metal pollutants in contaminated water is a timely challenge in environmental pollution research. In this study, a rapid and highly sensitive assay for the detection of Hg~(2+)based on quenching of metal-enhanced fluorescence of rhodamine B(RB)has been fabricated. RB and silver nanoparticle were incorporated into the mesoporous siliceous framework spin cast on a quartz glass through post-synthetic incorporation method. The morphology and crystallinity of mesoporous structure and Ag nanoparticle were characterized by transmission electron microscopy and X-ray diffraction analyses. Photoluminescence assays on the hybrid thin film of RB-Ag-SBA15 showed a high enhancement when compared to the intensity of silver free SBA15-RB in the wavelength of 575 nm. The fluorescence of RB-Ag-SBA15 thin film decreased gradually with the increase in the concentration of Hg~(2+)and the detection limits were 10.54 nmol/L. Furthermore, the fluorescence intensity increased linearly with the concentration of Hg~(2+)in the range from 1.0 ? 10à8mol/L to10 ? 10à8mol/L, with a response time of a few seconds. In addition, this system offers a high selectivity over interfering cations such as Cd~(2+) and Pb~(2+). Overall, we have developed an optical assay having a wellordered mesoporous SBA15 containing Ag-RBfor selective detection of Hg~(2+)in aqueous solution. The scheme combines the advantages of specific binding interactions between Hg~(2+)and RB molecule and optical emission properties of RB. The method is suitable for a single-shot and irreversible analytical assay in a quartz glass/microtiter plate.  相似文献   

20.
Ovalbumin-stabilized gold nanoclusters(OVA@AuNCs) were prepared with ascorbic acid as a reducing agent. This strategy could realize the synthesis of water-soluble OVA@AuNCs within 20 min. The asprepared fluorescent probe showed a red fluorescence emission at 630 nm. Moreover, the properties of the OVA@AuNCs were characterized by transmission electron microscope, dynamic light scattering,ultraviolet-visible spectroscopy, fluorescent spectroscopy. Based on the surface electron density decrease-induced fluorescence quenching mechanism, the OVA@AuNCs provided high sensitivity and selectivity for sensing copper ions. A good linear relationship was obtained between the fluorescence intensity of OVA@AuNCs and the concentration of copper ions in the range of 5.0-100.0 μmol/L(R~2=0.999) with a detection limit of 640 nmol/L Furthermore, the rat serum copper contents were determined by using the OVA@AuNCs based assay, indicating great potential of fluorescent probes for application in biological and clinical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号