首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   14篇
晶体学   9篇
物理学   8篇
  2022年   2篇
  2021年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Polyimide nanocomposites having low-k and UV shielding properties have been developed using fluorine functionalized graphene oxide and bis(quinoline amine) based polyimide. The polyimide was synthesized using bis(quinoline amine) and pyromellitic dianhydride at appropriate experimental conditions, and its molecular structure was confirmed through various spectral analysis such as FTIR and NMR. The polyimide (PI) composites were prepared using bis(quinoline amine), pyromellitic dianhydride, and separately filled with 1, 5, 10 wt% of fluorinated graphene oxide (FGO) through in situ polymerization. The polymer composites were characterized using thermo gravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In addition, the water contact angle, dielectric behavior, and UV–Vis shielding behavior of FGO/PI composites were evaluated. The value of the water contact angle of the polyimide was increased with increment of FGO in the polyimide matrix. The highest water contact angle of polyimide composites observed 108° was obtained for 15 wt% FGO reinforced polyimide composite. The value of the dielectric constant for neat, 1, 5, and 15 wt% FGO reinforced polyimide composites was obtained as 4.5, 3.7, 2.6, and 2.0, respectively. It is also observed from by UV–Vis spectroscopy analysis that the FGO reinforced polyimide composites have good UV shielding behavior.  相似文献   
2.
3.
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.  相似文献   
4.
A new cyanate ester monomer, 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane has been synthesized and characterized. Epoxy modified with 4, 8 and 12% (by weight) of cyanate ester were made using epoxy resin and 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane and cured by using diaminodiphenylmethane. The cyanate ester modified epoxy matrix systems were further modified with 4, 8 and 12% (by weight) of bismaleimide (N,N′-bismaleimido-4,4′-diphenylmethane). The formation of oxazolidinone and isocyanurate during cure reaction of epoxy and cyanate ester blend was confirmed by IR spectral studies. Bismaleimide-cyanate ester-epoxy matrices were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. Thermal studies indicate that the introduction of cyanate ester into epoxy resin improves the thermal degradation studies at the expense of glass transition temperature. Whereas the incorporation of bismaleimide into epoxy resin enhances the thermal properties according to its percentage content. However, the introduction of both cyanate ester and bismaleimide influences the thermal properties according to their percentage content. DSC thermogram of cyanate ester modified epoxy and bismaleimide modified epoxy show unimodel reaction exotherms. The thermal degradation temperature and heat distortion temperature of the cured bismaleimide modified epoxy and cyanate ester-epoxy systems increased with increasing bismaleimide content. The morphology of the bismaleimide modified epoxy and cyanate ester-epoxy systems were also studied by scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
Single crystals of ferroelectric succinic acid (SA) with very high degree of transparency were grown from aqueous solution by slow evaporation technique. Single crystal X‐ray diffraction analysis reveals that the crystal belongs to monoclinic system with the space group P21/c. Some physical parameters have been determined for grown crystal. The optical absorption study reveals the transparency of the crystal in the entire visible region and the cut off wave length was found to be 240 nm. The optical band gap is found to be 3.75 eV. The dependence of extinction coefficient (k) and refractive index (n) on the wavelength have also been reported. The presence of functional groups was determined qualitatively by using Fourier transform infrared spectrum (FTIR) from which force constant has been calculated. The dielectric constant was also studied as a function of frequency at room temperature and electrical conductivity has been calculated from the Cole‐Cole plot. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
6.
An intercrosslinked network of cyanate ester (CE)-bismaleimide (BMI) modified epoxy matrix system was made by using epoxy resin, 1,3-dicyanatobenzene and bismaleimide (N,N-bismaleimido-4,4-diphenyl methane) with diaminodiphenylmethane as curing agent. BMI-CE-epoxy matrices were characterised using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. The matrices, in the form of castings, were characterised for their mechanical properties such as tensile strength, flexural strength and unnotched Izod impact test as per ASTM methods. Mechanical studies indicated that the introduction of cyanate ester into epoxy resin improves the toughness and flexural strength with reduction in tensile strength and glass transition temperature, whereas the incorporation of bismaleimide into epoxy resin influences the mechanical and thermal properties according to its percentage content. DSC thermograms of cyanate ester as well as BMI modified epoxy resin show an unimodal reaction exotherm. Electrical properties were studied as per ASTM method and the morphology of the BMI modified epoxy and CE-epoxy systems were studied by scanning electron microscope.  相似文献   
7.
Journal of Cluster Science - The present work reports low cost, rapid synthesis of ZnO nanostructures capped with Millettia pinnata leaf extract which produced rods, pyramids, cones and flower like...  相似文献   
8.
The investigation on fabrication of Fe3O4-chitosan-pectinase nanobiocatalyst was performed by covalently binding the pectinase onto carboxyl group activated chitosan-coated magnetic nanoparticles (CMNPs). The morphological and size distribution analysis of the different magnetic nanoparticles (MNPs) was done using transmission electron microscopy (TEM), and the average diameter was 11.07?±?3.04, 11.55?±?3.16, and 11.59?±?3.16 nm for MNPs, CMNPs, and fabricated nanobiocatalyst, respectively, suggesting that there was no significant change in the size of MNPs after coating and binding. The characteristic peaks occurred at 2θ of 30.39, 35.43, 43.37, 57.22, and 62.9, and their corresponding indices 220, 311, 400, 520, and 441 for different MNPs from the X-ray diffraction (XRD) studies confirmed the presence of Fe3O4 with the spinel structure, and there was no phase change even after coating and binding. The various required characteristic absorption peaks (575, 585, 1,563, 1,614, 1,651, and 1,653 cm?1) from Fourier transform infrared (FT-IR) spectroscopy confirmed the surface modifications and binding of pectinase onto the MNPs. At the weight ratio of about 19.8?×?10?3 mg bound pectinase/mg activated CMNPs, the activity of fabricated nanobiocatalyst was found to be maximum. In order to monitor their improved activity, the pH, temperature, reusability, storage ability, and kinetic studies were established.  相似文献   
9.
Good quality single crystals of Ni2+, Co2+ ions doped Bisthiourea Cadmium Chloride (BTCC) are some of the excellent and efficient non‐linear optical materials grown from aqueous solution by slow evaporation method. The lattice parameters of the grown crystals are determined by single crystal X‐ray analysis. UV spectral analyses on these samples reveal the improved transparency of the doped crystals ascertaining the inclusion of metal ion in the lattice. FTIR spectral analysis carried out on the materials confirm the presence of functional groups. Dielectric measurements reveal that the dielectric constant of pure and doped crystals decreases with increase of frequency. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
10.
Nowadays, the rapid and effective detection of low doses of heavy metal pollutants in contaminated water is a timely challenge in environmental pollution research. In this study, a rapid and highly sensitive assay for the detection of Hg~(2+)based on quenching of metal-enhanced fluorescence of rhodamine B(RB)has been fabricated. RB and silver nanoparticle were incorporated into the mesoporous siliceous framework spin cast on a quartz glass through post-synthetic incorporation method. The morphology and crystallinity of mesoporous structure and Ag nanoparticle were characterized by transmission electron microscopy and X-ray diffraction analyses. Photoluminescence assays on the hybrid thin film of RB-Ag-SBA15 showed a high enhancement when compared to the intensity of silver free SBA15-RB in the wavelength of 575 nm. The fluorescence of RB-Ag-SBA15 thin film decreased gradually with the increase in the concentration of Hg~(2+)and the detection limits were 10.54 nmol/L. Furthermore, the fluorescence intensity increased linearly with the concentration of Hg~(2+)in the range from 1.0 ? 10à8mol/L to10 ? 10à8mol/L, with a response time of a few seconds. In addition, this system offers a high selectivity over interfering cations such as Cd~(2+) and Pb~(2+). Overall, we have developed an optical assay having a wellordered mesoporous SBA15 containing Ag-RBfor selective detection of Hg~(2+)in aqueous solution. The scheme combines the advantages of specific binding interactions between Hg~(2+)and RB molecule and optical emission properties of RB. The method is suitable for a single-shot and irreversible analytical assay in a quartz glass/microtiter plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号