首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用HPLC反相C18柱分离、ICP–MS检测,建立了农田土壤中甲基汞和乙基汞的分析方法。以0.5mol/L的硝酸溶液为浸提剂,超声波提取1 h,在优化的仪器条件下测定,甲基汞和乙基汞的质量浓度在0.1~50ng/m L范围内与谱线强度呈良好线性关系(r≥0.999),检出限分别为0.1,0.2 ng/m L;加标回收率分别为89.26%~94.26%,76.88%~79.27%;相对标准偏差分别为1.67%~2.38%,2.58%~3.84%(n=5)。该方法样品前处理简单、重现性好、检出限低、准确度高,适合于农田土壤中甲基汞和乙基汞的同时测定。  相似文献   

2.
高效液相色谱与原子荧光光谱联用分析海产品中的甲基汞   总被引:3,自引:1,他引:2  
建立了高效液相色谱-紫外消解-氢化物发生-原子荧光光谱联用测定海产品中甲基汞的方法, 比较了不同溶剂对海产品中甲基汞提取效率的影响. 实验采用质量分数25% (m/V) KOH甲醇溶液, 室温振荡10 h消解样品, CH2Cl2萃取, 再以0.01 mol/L Na2S2O3水溶液反萃取, 并采用HPLC-UV-HG-AFS测定鱼和扇贝萃取液中的甲基汞的含量. 在优化分离和前处理条件下, 平行进样5次10 ng/mL的汞混合标准溶液, 甲基汞、无机汞和乙基汞的色谱峰面积的相对标准偏差(RSDs)分别为4.4%、 3.9%和4.3%, 甲基汞、无机汞和乙基汞的检出限分别为0.069、 0.15和0.046 ng/mL;鱼和扇贝的甲基汞的加标回收率为96±5%和95±5%.  相似文献   

3.
建立了高效液相色谱与电感耦合等离子体质谱联用技术测定水产品中汞化合物形态的分析方法。采用盐酸提取样品,C18柱(4.6 mm×150 mm)分离,流动相为5%甲醇-0.06 mol/L乙酸铵-0.1%半胱氨酸,3种汞化合物的线性范围均为0~100μg/L,相关系数(r)均大于0.999 0,检出限为0.5~0.8μg/L;汞化合物各形态的RSD均小于5%;不同质量浓度下无机汞、甲基汞、乙基汞的加标回收率分别为72%~90%、99%~118%、93%~111%;鱼肉标准物质(GBW 10029)、人发标准物质(GBW 09101B)中汞形态的测定值均在标准值范围内,甲基汞的FAPAS国际比对结果Z评分为1.0。该方法前处理简便、线性范围宽、精密度高、准确性好,适用于水产品中汞化合物的形态分析。  相似文献   

4.
建立了高效液相色谱与电感耦合等离子体质谱联用技术测定海水中烷基汞的方法。对色谱和质谱的实验条件进行了优化,在最优化条件下,5 min内可实现甲基汞和乙基汞的分离和测定。甲基汞和乙基汞的检出限分别为5 ng/L,3 ng/L,线性相关系数均大于0.999,样品加标回收率为84%~94%,测定结果的相对标准偏差为3.3%~4.9%(n=7)。该法快速、简单、准确可靠,可用于海水及浓盐水样品中烷基汞的测定。  相似文献   

5.
张秀尧  蔡欣欣  张晓艺 《分析化学》2014,(10):1524-1529
建立了测定水产品中甲基汞和乙基汞的气相色谱质谱联用分析方法。采用6.0 mol/L HCl超声辅助提取,在NaCl存在下,提取液中甲基汞和乙基汞可被甲苯萃取,再用半胱氨酸反萃取,加入CuSO4释放出的甲基汞和乙基汞与四苯硼钠反应,生成甲基苯基汞和乙基苯基汞,经DB-5MS毛细柱分离,选择离子监测方式(SIM)质谱检测,以d3-甲基汞作为内标的稳定同位素稀释法定量。甲基汞和乙基汞标准曲线的线性范围均为1~500μg/L,国家标准参考物质(GBW 10029)6次测定的甲基汞(以汞计)平均值为0.828 mg/kg,相对标准偏差为3.2%,与证书参考值(0.84±0.03)mg/kg(以汞计)一致。鱼、虾和贝类等不同种类水产品中甲基汞和乙基汞的平均加标回收率分别为94%~101%和81%~104%,相对标准偏差在1.9%~4.7%和3.1%~8.2%范围内(n=6),样品的检出限为0.1~0.3μg/kg(S/N=3)。方法灵敏,准确,可用于水产品中甲基汞和乙基汞的测定。  相似文献   

6.
王萌  丰伟悦  张芳  汪冰  史俊稳  李柏  柴之芳  赵宇亮 《分析化学》2005,33(12):1671-1675
建立了高效液相色谱(HPLC)和电感耦合等离子体质谱(ICP-MS)联用测定多种生物样品中的无机汞和甲基汞的方法,并对比了提取生物样品中无机汞和甲基汞的不同前处理方法。实验使用5 mol/L的盐酸超声波提取样品中的无机汞和甲基汞。高效液相色谱流动相为含有0.06 mol/L醋酸氨,20μg/L B i,0.1%(V/V)2-巯基乙醇的5%(V/V)甲醇-水溶液,色谱柱为C18反相柱(5μm,3.9 mm×150 mm)。提取液在液相色谱中分离后,进入电感耦合等离子体质谱检测其中无机汞和甲基汞的浓度。测定了人发(GBW 07601),对虾(GBW 08572),鱼肉组织(IAEA MA-B-3/TM)和牛肝(GBW 080193)4种生物标准参考物,结果与标准参考物的标准值相符。无机汞和甲基汞检出限分别为0.3和0.2μg/L。  相似文献   

7.
建立了HCl提取,高效液相色谱与原子荧光联用技术测定水产中无机汞、甲基汞、乙基汞形态的分析方法。对前处理方法和液相色谱的最佳参数进行优化,实验表明,3种汞化合物的线性范围为0~100μg/L,相关系数(r)均优于0.9990,检出限在0.3~0.6μg/L之间,汞化合物各形态的RSD均小于5%,加标回收率在78.8%~116.8%之间,标准物质(GBW10029),(GBW09101B)中汞形态的测定值均在标准值范围内,参加甲基汞FAPAS国际比对,测定结果的Z比分数为1.0,故本方法适用于水产品中汞化合物形态的分析测定。  相似文献   

8.
建立了固相萃取、高效液相色谱与电感耦合等离子体质谱联用技术测定水中烷基汞的方法。对固相萃取、高效液相色谱和电感耦合等离子体质谱的实验条件进行了优化。在优化条件下,甲基汞和乙基汞的检出限分别为0.5,0.7 ng/L。对地表水、工业废水和生活污水3种水样分别加标10.0,50.0 ng/L进行测定,测定结果的相对标准偏差为3.3%~9.6%(n=6),加标回收率在81.0%~103.0%之间。该方法灵敏度高,实用性强。  相似文献   

9.
高效液相色谱与原子荧光光谱联用分析汞化合物形态的研究   总被引:15,自引:2,他引:15  
建立了高效液相色谱与原子荧光光谱联用测定汞化合物形态的分析方法。实验对淋洗液组分浓度、氧化剂和还原剂浓度、载气流速及紫外消解管长度等操作条件进行了优化,获得了令人满意的分析结果。在优化的分离检测条件下,20μg/L的汞化合物标准溶液平行7次进样分析,甲基汞、无机汞和乙基汞的色谱峰高的相对标准偏差(RSD)分别为2.0%、2.9%和2.4%;3种汞化合物的线性范围为10~1000μg/L,25μL进样检出限分别为3、2和4μg/L。用建立的方法测定了脉红螺样品中甲基汞的含量,甲基汞和乙基汞的加标回收率分别为90%和92%。  相似文献   

10.
用巯基棉富集,四乙基硼化钠衍生,气相色谱–质谱联用法测定水体中的甲基汞和乙基汞,线性范围为10~150 ng/L,线性范围内的重复性相对标准偏差(n=10)甲基汞为4.63%,乙基汞为5.52%,方法回收率甲基汞为99.00%~103.01%,乙基汞为85.49%~97.59%。通过四乙基硼化钠衍生把甲基汞和乙基汞化转化成全烷基化合物,降低了甲基汞和乙基汞的活性,减少甲基汞和乙基汞在色谱柱上的吸附和峰拖尾的现象。方法适合实验室大批量样品的测定。  相似文献   

11.
A comprehensive method for simultaneous determination of methylmercury (MeHg) and ethylmercury (EtHg) in rice by capillary gas chromatography (GC) coupled on-line with atomic fluorescence spectrometry was developed. The experimental conditions, including the pyrolyzer temperature and flow rates of the make-up gas and sheath gas, were optimized in detail. The absolute detection limits (3sigma) were 0.005 ng as Hg for both MeHg and EtHg. The relative standard deviation values (n=5) for 10 ng Hg/mL of MeHg and EtHg were 2.5 and 1.3%, respectively. The method was evaluated by analyzing 2 certified reference materials (DORM-2 and GBW08508), and the determined values of MeHg and total mercury concentrations were in good agreement with the certified values. In addition, the recoveries of MeHg and EtHg spiked into a rice sample collected from Jiangsu province in China were 86 and 77%, respectively. The proposed method was applied to analysis of MeHg and EtHg in 25 rice samples cultivated in 15 provinces of China. In all samples, MeHg was detectable and no EtHg was found. The MeHg contents in rice samples ranged from 1.9 to 10.5 ng/g, accounting for 7-44% of the total mercury measured.  相似文献   

12.
A method for mercury analysis and speciation in drinking water was developed, which involved stir bar sorptive extraction (SBSE) with in situ propyl derivatization and thermal desorption (TD)-GC-MS. Ten millilitre of tap water or bottled water was used. After a stir bar, pH adjustment agent and derivatization reagent were added, SBSE was performed. Then, the stir bar was subjected to TD-GC-MS. The detection limits were 0.01 ng mL(-1) (ethylmercury; EtHg), 0.02 ng mL(-1) (methylmercury; MeHg), and 0.2 ng mL(-1) (Hg(II) and diethylmercury (DiEtHg)). The method showed good linearity and correlation coefficients. The average recoveries of mercury species (n=5) in water samples spiked with 0.5, 2.0, and 6.0 ng mL(-1) mercury species were 93.1-131.1% (RSD<11.5%), 90.1-106.4% (RSD<7.8%), and 94.2-109.6% (RSD<8.8%), respectively. The method enables the precise determination of standards and can be applied to the determination of mercury species in water samples.  相似文献   

13.
Liu Z  Zhu Z  Wu Q  Hu S  Zheng H 《The Analyst》2011,136(21):4539-4544
This paper describes a low-temperature dielectric barrier discharge (DBD)-plasma induced vaporization technique using mercury as a model analyte. The evaporation and atomization of dissolved mercury species in the sample solution can be achieved rapidly in one step, allowing mercury to be directly detected by atomic fluorescence spectrometry. The DBD plasma was generated concentrically in-between two quartz tube (outer tube: i.d. 5 mm and o.d. 6 mm, inner tube: i.d. 2 mm and o.d. 3 mm). A copper electrode was embedded inside the inner quartz tube and sample solution was applied onto the outer surface of the inner tube. The effects of operating parameters such as plasma power, plasma gas identity, plasma gas flow rate and interferences from concomitant elements have been investigated. The difference in the sensitivities of Hg(2+), methylmercury (MeHg) and ethylmercury (EtHg) was found to be negligible in the presence of formic acid (≥1% v/v). The analytical performance of the present technique was evaluated under optimized conditions. The limits of detection were calculated to be 0.02 ng mL(-1) for Hg(2+), MeHg and EtHg, and repeatability was 6.2%, 4.9% and 4.3% RSD (n = 11) for 1 ng mL(-1) of Hg(2+), MeHg and EtHg, respectively. This provides a simple mercury detection method for small-volume samples with an absolute limit of detection at femtogram level. The accuracy of the system was verified by the determination of mercury in reference materials including freeze-dried urine ZK020-2, simulated water matrix reference material GBW(E) 080392 and tuna fish GBW10029, and the concentration of mercury determined by the present method agreed well with the reference values.  相似文献   

14.
The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg(2+)) and monomethylmercury compounds (MeHg) in natural water samples at the pg L(-1) level. The method is based on the simultaneous extraction of MeHg and Hg(2+)dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na(2)S, removal of H(2)S by purging with N(2), subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L(-1) for MeHg and 0.06 ng L(-1) for Hg(2+)when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg(2+). Recoveries were 90-110% for both species.  相似文献   

15.
Current approaches to mercury speciation and total trace element analysis require separate extraction/digestions of the sample. Ecologically important aquatic organisms--notably primary consumers such as zooplankton, polychaetes and amphipods--usually yield very low biomass for analysis, even with significant compositing of multiple organisms. Individual organisms in the lower aquatic food chains (mussels, snails, oysters, silversides, killifish) can also have very low sample mass, and analysis of whole single organisms is important to metal uptake studies. A method for the determination of both methyl Hg and total heavy metal concentrations (Zn, As, Se, Cd, Hg, Pb) in a single, low-mass sample of aquatic organisms was developed. Samples (2 to 50 mg) were spiked with enriched with (201)MeHg and (199)Hg, then leached in 4 M HNO(3) at 55 degrees C for extraction of MeHg. After 16 h, an aliquot (0.05 mL) was removed to determine mercury species (methyl and inorganic Hg) by isotope dilution gas chromatography inductively coupled plasma mass spectrometry (ICP-MS). The leachate was then acidified to 9 M HNO(3) and digested in a microwave at 150 degrees C for 10 min, and total metal concentrations were determined by collision cell ICP-MS. The method was validated by analyzing five biological certified reference materials. Average percent recoveries for Zn, As, Se, Cd, MeHg, Hg(total) and Pb were 99.9%, 103.5%, 100.4%, 103.3%, 101%, 97.7%, and 97.1%, respectively. The correlation between the sum of MeHg and inorganic Hg from the speciation analysis and total Hg by conventional digestion of the sample was determined for a large sample set of aquatic invertebrates (n = 285). Excellent agreement between the two measured values was achieved. This method is advantageous in situations where sample size is limited, and where correlations between Hg species and other metals are required in the same sample. The method also provides further validation of speciation data, by corroborating the sum of the Hg species concentrations with the total Hg concentration.  相似文献   

16.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

17.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described.  相似文献   

18.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described. Received: 10 March 1997 / Revised: 29 January 1998 / Accepted: 5 February 1998  相似文献   

19.
A simple and rapid method for in situ preconcentration of inorganic and organic mercury compounds in water samples, based on solid phase extraction using dithizone immobilised on a reversed-phase C18 cartridge, has been developed. The adsorbed complexes were stable on the cartridge for at least 2 weeks. The speciation analysis of methylmercury (MeHg), phenylmercury (PhHg) and inorganic mercury (Hg (II)) were done by reversed-phase high performance liquid chromatography. The calibration graphs of MeHg, PhHg and Hg (II) were linear (r>0.999) from the detection limits (0.58, 0.66 and 0.54 ng) to 38, 25 and 26 ng of Hg, respectively. The average recoveries of MeHg, PhHg and Hg (II) from spiked samples (0.3-48.0 mug l(-1) Hg) were 98+/-3, 99+/-1 and 100+/-7%, respectively. By applying SPE procedure a 200-fold concentration of the sample was obtained.  相似文献   

20.
采用微波消解样品前处理手段以及双道原子荧光光度计,建立了微波消解一氢化物发生原子荧光光谱法同时测定化肥中砷、汞含量的方法。通过试验确定了样品前处理方法,对负高压、灯电流,载气、屏蔽气、原子化器高度、酸度等测试条件进行了优化。在优化的工作条件下,砷、汞含量分别在0-50ng/mL和0—1.0ng/mL范围内与荧光强度呈良好的线性关系,线性相关系数分别为0.9996,0.9996,检出限分别为0.085,0.008ng/mL,回收率分别为88.8%~107.4%,90.0%~120%,测定结果的相对标准偏差均小于7%(n=6)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号