首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用熔融共混方法制备了聚左旋乳酸(PLLA)和超高分子量聚氧化乙烯(PEO)共混物, 通过差示扫描量热(DSC)、 扫描电子显微镜(SEM)和二维广角X射线散射(2D-WAXS)等方法系统研究了PEO的加入对不同温度下PLLA拉伸行为及拉伸过程中微观结构变化的影响. 结果表明, PLLA/PEO共混物为非均相体系, PEO粒子均匀分布在PLLA中形成两相结构. PEO的加入能够显著降低PLLA的玻璃化转变温度(Tg), 在25~60 ℃范围内显著提高PLLA的拉伸性能. 在60 ℃拉伸时, PEO的加入提高了PLLA在拉伸过程中的结晶和形变能力. 在80 ℃拉伸时, 共混物的拉伸断裂伸长率下降, 但共混物的结晶速度仍高于纯PLLA样品.  相似文献   

2.
采用稀土三元催化剂制备了二氧化碳-环氧丙烷-马来酸酐三元共聚物(PPCMA).用红外和核磁谱图确定了PPCMA的结构及马来酸酐单元的含量,3 wt%马来酸酐投料量的PPCMA(共聚物中马来酸酐单元含量4.1%)的玻璃化转变温度(Tg)和起始热分解温度(Td-5%)分别为13.4℃和217℃,拉伸强度为2.88 MPa,断裂伸长率为1669%,与二氧化碳-环氧丙烷共聚物(PPC)相比,引入少量马来酸酐的PPCMA有望成为一种韧性材料,并可对PPC和聚3-羟基丁酸酯(PHB)共混体系进行改性.当在PPC/PHB共混体系中添加10 wt%的PPCMA时,所得共混材料的拉伸强度为18.2 MPa,断裂伸长率则提高到85%,较没有添加PPCMA的样品提高了4.25倍,因此PPCMA的加入能有效提高PPC/PHB共混体系的韧性,改善PPC/PHB共混体系的力学性能.偏光显微镜的研究表明PPC/PHB共混体系加入PPCMA后,很快形成大量尺寸小的PHB球晶,且结晶速度大幅度提高,因此PPCMA在一定意义上可视为一种特殊的“成核剂”.  相似文献   

3.
以六氟异丙醇(HFIP)为聚甲醛(POM)与聚氧化乙烯(PEO)的共溶剂,通过溶液结晶研究了PEO分子量对POM/PEO 50/50晶/晶共混物结晶行为及结晶形态的影响。结果表明,PEO分子量越小,POM与PEO在结晶过程中相互干扰越大。当PEO分子量为4×103时,共混物中POM形成部分不完善晶体,出现明显的熔融双峰。SEM结果表明:含不同分子量PEO的共混晶体均无明显相分离,且低分子量PEO的共混物更易形成规整球晶,认为通过溶液结晶,POM/PEO 50/50共混物中POM与PEO形成了晶体相互穿插的结晶结构。  相似文献   

4.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

5.
生物塑料--聚(β-羟基丁酸酯)的物理改性和化学改性   总被引:2,自引:0,他引:2  
综述了生物塑料聚(β-羟基丁酸酯)(PHB)近年来在物理改性(共混改性)和化学改性(大分子反应改性和反应性共混改性)方面工作的进展状况。在PHB共混体系中,可解体性共混物和全生物降解性共混物是两类不同的共混体系,后者从长远意义上讲是解决环境污染问题的根本途径,而其现实意义上的用途是在生物医学领域。文章主要对PHB共混体系的相容性、热行为、结晶行为、机械性能和降解性能等方面的规律进行了总结。并指出反应性共混是较佳改善非相容PHB共混体系相容性的方法,而大单体反应改性和反应性共混则是改造PHB,提供新型功能化医用材料的有效手段。这些领域方面的研究代表了PHB改性工作新的发展方向。  相似文献   

6.
用扫描电子显微镜图像分析研究了聚丙烯/聚酰胺1010共混物及其部分相容体系的相形态结构,计算了表征相结构和尺寸的结构参数,如分散相的平均直径、平均弦长和分散相的质心相关距等.并分别讨论了聚丙烯/聚酰胺1010共混物及其部分相容体系的相形态以及其结构参数与共混物组成的关系.测定了聚合物及其共混物体系的力学性能,讨论了共混物组成与力学性能的关系.聚丙烯/聚酰胺1010共混物的拉伸模量与组成的关系较为复杂,但其部分相容体系的拉伸模量与组成呈线性关系.聚丙烯/聚酰胺1010及其共混物体系的屈服强度与共混物组成均呈线性关系.表征相结构的两相平均弦长比(l-1/-l2)与组成以及共混物体系力学性能与组成的关系,二者相似.同时讨论了体系力学性能随相尺寸等的变化规律.  相似文献   

7.
P(MMA—MAA)/PEO氢键复合物的增容效应   总被引:1,自引:0,他引:1  
本文研究了P(MMA-MAA)/PEO氢键复合物对一些聚合物共混体系的增容效应。首次用机械共混方法制备了P(MMA-MAA)/PEO氢键复合物。该复合物不能被甲醇革取,其热失重行为不是其组分聚合物的加和,表明此复合物不是简单的共混物。实验结果证实,该复合物可以改进PMMA/PEO体系的相容性,改善PVC共混体系的力学性能和加工性能。  相似文献   

8.
对聚(ε-己内酯)(PCL)/聚氧化乙烯(PEO)共混物的相差显微镜、广角X-射线衍射(WAXD)、小角X-射线散射(SAXS)及示差扫描量热计(DSC)等的研究表明,只有当共混物中PCL(或PEO)的含量低于20%时,两组份是相容的.当PCL含量低于20%时,在共混物中形成了PEO片晶和PCL片晶相间堆砌的结晶形态,当PEO含量不超过20%时,PEO则完全以非晶形式混入PCL的非晶区,同时阻碍了PCL的结晶.可见在结晶过程中,相容的两组份对共混体系形态结构的影响却不尽相同.  相似文献   

9.
对不同分子量聚氧乙烯(PEO)以不同比例与双酚A二缩水甘油醚型环氧树脂(ER)制得的交联共混物ER/PEO,以及再与NaSCN络合后的产物用WAXD,SAXS,DSC和SEM等方法进行了研究,结果表明:随着ER含量的增加,ER/PEO共混物由晶态转为非晶态。ER/PEO属单斜晶系;与NaSCN络合后,体系结晶性变差。ER/PEO-NaSCN属三斜晶系,其长周期比相应ER/PEO交联共混物的长周期值大。EP的加入使非晶层增厚,结晶片层变薄,长周期值增加。  相似文献   

10.
以双酚S型含萘环的聚芳醚酮为增容剂,研究了对聚醚砜(PES)与对苯二酚型-1,4-萘环的聚芳醚酮(1,4-NA-PAEK)共混体系的相容性及力学性能.结果表明,双酚S型含萘环的聚芳醚酮可显著降低PES/NA-PAEK共混体系中NA-PAEK分散相尺寸,改善两组分间的相容性,并且增容剂的加入使共混体系形成了双连续的互锁结构,提高了共混物的力学性能.  相似文献   

11.
通过溶液浇铸法制备了脂肪族聚碳酸酯与聚乳酸的共混物(PPC/PLA).采用示差热分析(DSC)和热重分析(TG)研究了材料的热性能.采用拉伸力学试验研究了共混物的力学性能.通过土壤悬浊拟环境培养降解实验法和扫描电子显微镜分析(SEM)对共混材料的生物降解性能进行了研究.实验结果表明,随着PPC含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高.但是,在一定的降解时间内,某些比例共混物的降解速率比100%PPC还要快.综合分析表明,PPC/PLA是力学性能和降解性能可以互补的共混体系.  相似文献   

12.
以二乙酸甘油酯(GD)引发L-丙交酯(LLA)开环聚合合成了二乙酸甘油酯封端的齐聚L-丙交酯(OGLA),并以此为增塑剂,以溶液共混法制备了OGLA与高分子量聚L-丙交酯(PLLA)的共混膜.采用DSC研究了共混膜的T_g和结晶性变化,考察了共混膜的力学性能和渗出性.结果表明:随着OGLA含量的增加,共混物T_g下降,结晶度降低,柔性提高;与聚乳酸相比,随着OGLA含量的增加,拉伸强度、弹性模量有一定程度降低,但断裂伸长率有较大程度的提高,力学性能得到较好的平衡;OGLA增塑体系与GD增塑体系相比较,优势在于避免了小分子增塑剂的渗出.  相似文献   

13.
研究了聚环氧乙烷(PEO)/聚2-乙烯基吡啶(P2VP)的共混物分别经LiCLO4、四氰基代苯醌二甲烷(TCNQ)及两者共同掺杂后其共混物的离子、电子及混合导电率。当PEO与P2VP的重量比分别为6/4、5/5及4/6时,共混物的混合导电率大于相应的离子及电子导电率的总和,呈现协同效应。从共混物外观的研究发现LiCLO4能作为PEO/P2VP共混体系的增容剂。  相似文献   

14.
在温度280℃附近对含有液晶共聚酯P-Hydroxy Benzoic Acid/Poly(-Ethylene Terephthalate-)PHB/PET和Poly(-Ethylene Terephthalate-)PET的共混样品进行热处理时,发现共混物的熔点随热处理的时间增加而不断降低,热处理温度越高,相同时间内共混物熔点下降程度越大;而具有相同热历史的纯PET样品熔点几乎保持不变.通过NMR方法证实了PHB/PET-TET共混物熔点随热处理时间下降是由于PHB/PET和PET之间发生了酯交换反应.所以可根据共混物的宏观热性质和PHB/PET序列结构变化表征PHB/PET和PET共混物之间的酯交换程度.  相似文献   

15.
本文用WAXD、PLM、DSC方法研究了聚氧化乙烯(PEO)/聚乙烯基吡咯烷酮(PVP)共混体系的结晶行为,探索了两组分聚合物间相互作用及体系结晶度与非晶组分含量的关系。DSC研究表明PEO/PVP共混体系具有两个玻璃化转变温度,分别是纯组分的T_g,无相容性。应用Avrami和LH方程对其动力学参数进行了研究。偏光显微镜观察了共混物结构形态。  相似文献   

16.
研究了甲基丙烯酸缩水甘油酯 (GMA)和苯乙烯 (St)多单体熔融接枝聚丙烯 (PP g (GMA co St) )对聚对苯二甲酸丁二酯 (PBT) 聚丙烯 (PP)共混物的形态结构和力学性能的影响 .利用双螺杆挤出机对PBT PP合金进行共混挤出 ,使用DSC、FT IR和SEM、TEM等手段对共混物进行了分析和相形态观察 ,并测试了力学性能 .实验证明 ,熔融共混过程中PP g (GMA co St)的环氧基团可以与PBT的端羧基发生化学反应 ,就地生成了PBT g PP共聚物 ,该共聚物可对PBT PP合金起到良好的增容剂作用 ,使共混物的相区尺寸显著减小 ,共混物的拉伸强度和冲击强度等力学性能同时得到明显改善 ,达到了弹性体系或小分子增容所难以达到的力学性能平衡的效果 .此外 ,TEM的研究还在PBT PP g (GMA co St)共混物中发现了特殊的微相分离结构  相似文献   

17.
通过嵌段聚合物的微相分离和高分子氢键复合,使用聚苯乙烯-b-聚丙烯酸-b-聚苯乙烯(SAS)三嵌段聚合物和聚氧化乙烯(PEO)均聚物构筑了具有多层次结构的弹性体(SA/E).聚丙烯酸(PAA)与PEO形成柔性的氢键复合物(PAA/PEO),刚性的聚苯乙烯(PS)与PAA和PEO不相容而发生微相分离,PS作为交联点连接着柔性的PAA/PEO.与PAA/PEO氢键复合物相比,SA/E弹性体力学性能明显提升,通过控制PS质量分数可调节弹性体的模量和强度等力学性能. SA/E弹性体表现出湿度敏感性.并且弹性体经拉伸训练后可获得一定的取向性,弹性回复率保持在98%以上.本弹性体在湿度传感、柔性器件、医用材料等领域具有潜在应用,为构筑新型弹性体提供思路.  相似文献   

18.
PP-g-(GMA-co-St)对PA6/PC共混物的反应增容作用   总被引:10,自引:0,他引:10  
用红外、扫描电镜、熔体流动速率和力学性能等测试方法,研究了甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(GMA-co-St)]对PA6/PC共混物的反应增容作用.研究结果表明,在熔融共混过程中,PP-g-(GMA-co-St)中的环氧基与PA6的端氨基及PC的端羟基原位生成的接枝共聚物有效地降低了共混物相间的界面张力,明显提高了共混物相界面的粘着力.少量的PP-g-(GMA-co-St)就能使PA6和PC的相容性得到显著改善.当PP-g-(GMA-co-St)的质量分数为10%时,共混物分散相的相区尺寸细化到0.2μm,其力学性能也有较大提高.PA6/PC/PP-g-(GMA-co-St)共混物的力学性能均衡,达到了弹性体增韧体系难以达到的效果.即使PP-g-(GMA-co-St)组分含量为20%时,共混物仍能保持较好的力学性能,特别是在共混物的韧性得以提高的同时,其强度和伸长率也提高.  相似文献   

19.
采用熔融共混方法制备了聚乳酸与聚氧化乙烯的共混物.细致研究了重均分子量分别为2 kDa、10kDa1、00 kDa和600 kDa的聚氧化乙烯对聚乳酸的改性效果,并使用DSC、DMA及旋转流变仪等分析了共混物的相容性、热行为、力学性能和流变行为.结果表明,在聚氧化乙烯的组分含量不超过20 wt%的前提下,共混体系保持为完全相容体系,当聚氧化乙烯的分子量超过10 kDa时,其对聚乳酸的增塑效果,不随分子量增加而降低;增加聚氧化乙烯的分子量,可以提高材料的弹性模量和熔体强度.  相似文献   

20.
采用一定比例的聚对苯二甲酸丁二醇酯(PBT)对聚对苯二甲酸乙二醇酯(PET)进行共混改性纺制大直径单丝,通过对共混单丝的力学性能、扫描电子显微镜及热性能分析,研究了共混比例、后拉伸工艺对共混物的相容性和拉伸强度的影响.结果表明:通过PET-PBT共混,提高了单丝的勾结强度;液体冷却温度、拉伸倍率及拉伸温度是影响共混单丝...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号