首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
研究了Ru和Cu助剂对无K的费托(F-T)合成Fe基催化剂的织构性质、物相结构、还原和碳化行为的影响.在n(H2)/n(CO)=2.0,t=260℃,P=1.5MPa和GHSV=2000h-1的条件下,采用固定床反应器考察了Ru,Cu助剂对Fe基催化剂费托合成反应性能的影响.采用低温N2物理吸附、X射线衍射、穆斯堡尔谱...  相似文献   

2.
采用低温N2吸附、XRD、MES、CO-TPR和H2-DTG研究了Zn(100 gFe/x gZn,x=7~100)助剂对Fischer-Tropsch(F-T)合成Fe基催化剂的织构性质、还原行为以及相变结构的影响;在H2/CO=2.0、260℃、1.5 MPa和4000 mL/(g·h)条件下在固定床反应器上考察了Zn助剂含量对Fe基催化剂F-T合成反应活性、烃产物选择性和运行稳定性的影响.研究结果表明,随着Zn含量的增加,氧化态催化剂的物相由α-Fe2O3和ZnFe2O4逐渐向ZnFe2O4和ZnO转变,ZnFe2O4在催化剂中优先生成,只有在超出其计量比1∶2之后才有ZnO出现.由于ZnFe2O4较为稳定,能够促进催化剂中Fe物相的分散,导致比表面积增加.在还原和反应态催化剂中,ZnFe2O4一方面抑制催化剂的过度还原和碳化;另一方面表现为稳定活性相铁碳化物.催化剂的F-T反应性能评价结果表明,纯铁催化剂由于铁碳化物氧化而迅速失活,而Zn助剂催化剂却由于ZnFe2O4的稳定作用,活性较为稳定.同时,由于催化剂在反应初相变的影响,导致Zn助剂催化剂的初始烯烃选择性随着Zn含量的增加而增加,在相态稳定之后选择性趋于一致.  相似文献   

3.
采用不同来源γ-Al2O3(市售Al2O3-1,合成Al2O3-2)作为钌基氨合成催化剂载体,利用浸渍法制备了一系列添加不同BaO助剂含量的Ba-Ru/Al2O3催化剂.通过X射线衍射(XRD)、N2-低温物理吸附、X射线荧光光谱(XRF)、透射电镜(TEM)、H2程序升温还原(H2-TPR)、NH3程序升温脱附(NH3-TPD)和X射线光电子能谱(XPS)等方法研究了不同来源的Al2O3以及BaO助剂含量对负载型钌基催化剂的物相结构、织构性质、微观形貌、表面性质和催化剂的氨合成活性等方面的影响.结果表明,载体的物理化学性质对制备的钌基氨合成催化剂的结构以及活性有较大影响.BaO助剂对催化剂的影响主要表现在两个方面:添加量不同导致BaO与γ-Al2O3的作用力不同,从而进一步影响催化体系的比表面积和孔结构性质;BaO助剂会对体系的Ru物种还原性质以及催化剂表面酸碱性质进行调节,适量BaO的加入能够极大提高反应活性,而这种最佳量与载体性质密切相关.  相似文献   

4.
Zn助剂对铁基催化剂费托合成制低碳烯烃性能的影响   总被引:3,自引:0,他引:3  
低碳烯烃(C2=–C4=)是十分重要的基础化工原料,目前主要采用热裂解或催化裂解石脑油、蜡油等工艺路线生产。近年来,针对全球范围的石油危机及我国富煤贫油这一基本的国情,以煤、天然气(页岩气)和生物质等丰厚的碳资源,经合成气制取低碳烯烃的工艺路线备受关注。其中,合成气经由甲醇或二甲醚间接制取烯烃技术(MTO/MTP)已经工业化;与之相比,费托合成直接生产低碳烯烃(FTO)工艺流程短、投资和操作费用低,具有良好的工业发展前景。目前,费托合成催化剂活性组分的研究主要集中于Fe, Co, Ni和Ru等元素,其中Fe基催化剂具有较高低碳烯烃选择性、较低甲烷选择性和制造廉价等优势,更适合于FTO反应。最近,人们大多聚焦于对负载型铁基催化剂的研究,但传统非负载型铁催化剂由于其制备简单、价格低廉,仍然具有巨大的开发前景。近来,我们组报道了采用微波水热法制备的Zr助剂改性Fe-Zr催化剂应用于CO加氢研究,提高了催化剂的活性,与传统Mn改性铁基催化剂相比, CO2选择性明显降低。目前,已有研究小组对Zn助剂提高铁基催化剂烯烃选择性进行报道,但反应过程中的严重积碳问题却少有研究。我们在Fe-Zr催化剂的基础上,进一步研究了Zn助剂在提高铁基催化剂低碳烯烃选择性、改善产物分布和降低反应过程积碳方面的作用。
  我们分别采用微波水热法和浸渍法对铁基催化剂进行了Zn改性,并将其用于费托合成制取低碳烯烃反应。运用扫描电镜(SEM)、X射线衍射(XRD)、N2物理吸附(BET)、H2程序升温还原(H2-TPR)和X射线光电子能谱(XPS)技术手段对催化剂的物理和化学性质进行了表征。结果表明,两种方法改性后的铁基催化剂具有高低碳烯烃选择性和稳定性,重质烃(C5+)含量降低,且保持低CO2选择性。此外,采用两种方法Zn改性的铁基催化剂展现出了不同的特性。 XRD结果表明,反应前两种方法制备的样品α-Fe2O3物相晶粒大小均为15–18 nm,反应后浸渍法制备的样品对应物相(ZnFe2O4)晶粒大小约为25 nm、而微波水热法制备的样品约为20 nm,说明微波水热法改性的催化剂有效分散了Fe活性组分; H2-TPR结果显示,两种Zn助剂加入方法对催化剂Fe组分的还原行为有不同程度影响,体现了活性组分间不同的相互作用; XPS结果表明, Zn助剂改变了催化剂Fe活性位的化学性质,在微波水热法制得催化剂的表面Zn含量更低、分散度更高,而Zn助剂的加入对Zr组分没有明显影响。所有催化剂经200 h在线活性测试后,采用传统浸渍法制备的催化剂表面有大量积碳生成;而采用微波水热改性铁基催化剂积碳量明显减少,表现出更高的催化活性与稳定性。  相似文献   

5.
低碳烯烃(C_2~=–C_4~=)是十分重要的基础化工原料,目前主要采用热裂解或催化裂解石脑油、蜡油等工艺路线生产.近年来,针对全球范围的石油危机及我国富煤贫油这一基本的国情,以煤、天然气(页岩气)和生物质等丰厚的碳资源,经合成气制取低碳烯烃的工艺路线备受关注.其中,合成气经由甲醇或二甲醚间接制取烯烃技术(MTO/MTP)已经工业化;与之相比,费托合成直接生产低碳烯烃(FTO)工艺流程短、投资和操作费用低,具有良好的工业发展前景.目前,费托合成催化剂活性组分的研究主要集中于Fe,Co,Ni和Ru等元素,其中Fe基催化剂具有较高低碳烯烃选择性、较低甲烷选择性和制造廉价等优势,更适合于FTO反应.最近,人们大多聚焦于对负载型铁基催化剂的研究,但传统非负载型铁催化剂由于其制备简单、价格低廉,仍然具有巨大的开发前景.近来,我们组报道了采用微波水热法制备的Zr助剂改性Fe-Zr催化剂应用于CO加氢研究,提高了催化剂的活性,与传统Mn改性铁基催化剂相比,CO_2选择性明显降低.目前,已有研究小组对Zn助剂提高铁基催化剂烯烃选择性进行报道,但反应过程中的严重积碳问题却少有研究.我们在Fe-Zr催化剂的基础上,进一步研究了Zn助剂在提高铁基催化剂低碳烯烃选择性、改善产物分布和降低反应过程积碳方面的作用.我们分别采用微波水热法和浸渍法对铁基催化剂进行了Zn改性,并将其用于费托合成制取低碳烯烃反应.运用扫描电镜(SEM)、X射线衍射(XRD)、N_2物理吸附(BET)、H_2程序升温还原(H_2-TPR)和X射线光电子能谱(XPS)技术手段对催化剂的物理和化学性质进行了表征.结果表明,两种方法改性后的铁基催化剂具有高低碳烯烃选择性和稳定性,重质烃(C_5~+)含量降低,且保持低CO_2选择性.此外,采用两种方法 Zn改性的铁基催化剂展现出了不同的特性.XRD结果表明,反应前两种方法制备的样品α-Fe_2O_3物相晶粒大小均为15–18 nm,反应后浸渍法制备的样品对应物相(ZnFe_2O_4)晶粒大小约为25 nm、而微波水热法制备的样品约为20 nm,说明微波水热法改性的催化剂有效分散了Fe活性组分;H_2-TPR结果显示,两种Zn助剂加入方法对催化剂Fe组分的还原行为有不同程度影响,体现了活性组分间不同的相互作用;XPS结果表明,Zn助剂改变了催化剂Fe活性位的化学性质,在微波水热法制得催化剂的表面Zn含量更低、分散度更高,而Zn助剂的加入对Zr组分没有明显影响.所有催化剂经200 h在线活性测试后,采用传统浸渍法制备的催化剂表面有大量积碳生成;而采用微波水热改性铁基催化剂积碳量明显减少,表现出更高的催化活性与稳定性.  相似文献   

6.
定明月  杨勇  相宏伟  李永旺 《催化学报》2010,31(9):1145-1150
 采用连续共沉淀和喷雾干燥相结合的方法制备了微球形 Fe 基催化剂, 采用 N2 吸附-脱附、X 射线衍射和穆斯堡尔谱等手段, 考察了催化剂在不同还原条件下铁物相的转变, 并在浆态床反应器中评价了催化剂的费-托合成 (FTS) 反应性能. 结果表明, Fe 基催化剂在合成气气氛下首先从α-Fe2O3 转变为 Fe3O4, 然后转变为铁碳化物 (FexC); 还原压力的增大有利于 α-Fe2O3 向 Fe3O4 的转变, 而抑制 Fe3O4 向 FexC 的转变; 还原空速的增加则促进 Fe3O4 转变为 FexC. 催化剂的 FTS 反应活性随着催化剂中 Fe3O4 含量的增加而逐渐下降, 而随着 FexC 含量的增加而逐渐上升.  相似文献   

7.
分别采用一步合成法和常规共沉淀法制备了Fe/SiO2催化剂,通过N2物理吸附、X射线衍射、透射电镜、傅里叶变换红外光谱和程序升温还原等方法对催化剂进行了表征,并在固定床反应器中对其费托合成制低碳烯烃的催化性能进行了评价。结果表明,与共沉淀铁基催化剂不同,采用一步合成法制备的纳米复合物主要由Fe3O4相构成,形貌呈规则球形,平均粒径为30 nm,尺寸分布窄,更容易还原。一步合成法制得的Fe/SiO2催化剂对费托合成反应具有较高的活性和低碳烯烃选择性、较低的甲烷选择性和良好的稳定性。  相似文献   

8.
 研究了 Mo 和 Cu 助剂对 FeK/SiO2 催化剂的性质及费托 (F-T) 合成性能的影响. 采用 N2 物理吸附、H2 程序升温还原、X 射线衍射、穆斯堡尔谱和 X 射线光电子能谱技术对催化剂进行了表征. 结果表明, Mo 加入后与 Fe 产生了较强的相互作用, 抑制了催化剂的还原和碳化; Cu 助剂的加入促进了催化剂的还原和碳化; 当 Mo 和 Cu 共同加入后, 催化剂的还原和碳化行为与单独加入 Cu 助剂时相似. 催化剂 F-T 合成性能在固定床上于 280 oC, 1.5 MPa, 2 000 h-1, H2/CO = 2.0 的合成气中测试. 结果表明, Mo 的加入降低了催化剂活性, 但提高了重质烃 (C5+) 的选择性; Cu 的添加提高了催化剂的活性, 但对稳定 C5+选择性作用不明显. Mo 和 Cu 共同加入后, 催化剂既表现出较为稳定的 C5+选择性, 同时其活性也没有降低.  相似文献   

9.
研究了钠、钾助剂对FeMn合成低碳烯烃催化剂结构及性能的影响.低温N2吸附、X射线光电子能谱(XPS)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、CO/CO2程序升温脱附(CO/CO2-TPD)、M?ssbauer谱和CO+H2反应的研究结果表明,增加Mn助剂含量促进了活性相的分散和低碳烯烃的生成,而过多锰助剂在催化剂表面的富集则降低了费托合成反应的CO转化率;钾助剂和钠助剂的加入均抑制了催化剂的还原并且促进了CO2和CO的吸附.比较还原后(H2/CO摩尔比为20)和反应后(H2/CO摩尔比为3.5)催化剂的体相结构可以发现,在FeMn、FeMnNa和FeMnK催化剂中,由于钾助剂的碱性和CO吸附能力较强,因此体相中FeCx的含量相对较高;而活性测试结果表明,FeMnNa催化剂拥有最好的CO转化率(96.2%)和低碳烯烃选择性(30.5%,摩尔分数).  相似文献   

10.
制备了一系列不同La2O3含量(100Fe/2.8Si/nLa,n=0,0.5,1,2,4,原子比)的沉淀铁费-托合成催化剂,通过原位X射线衍射、一氧化碳程序升温还原和N2吸附-脱附等手段对催化剂进行了表征.催化剂费-托反应评价在固定床反应器中进行.结果表明,少量La2O3助剂(La/Fe≤0.01,原子比)的加入显著降低了Fe2O3颗粒大小,增加了催化剂的比表面积和分散度,有利于碳化铁的形成,从而导致费-托合成催化活性的提高.随着La2O3含量的进一步增加(La/Fe≥0.02),催化剂表面大量La2O3的覆盖和LaFeO3化合物的形成降低了铁碳化物的形成,反应活性反而降低.因此,最适宜的La2O3含量为La/Fe=0.01.La2O3的加入提高了甲烷的选择性,抑制了C5+碳氢化合物的形成.  相似文献   

11.
以纯Fe催化剂为研究对象,采用XRD、Raman和TPH等手段考察了催化剂的碳化程度、还原程度对H_2O氧化过程的影响,获得了H_2O氧化过程与催化剂中碳物种转变之间的相互影响规律;系统考察了典型的费托合成助剂K和SiO_2存在时对催化剂物化性质以及H_2O氧化行为的影响,发现催化剂的碳化程度越高,碳化铁的抗H_2O氧化能力越强,氧化过程使得碳物种的石墨化程度增加。适量K助剂可促进碳化铁和催化剂表面石墨碳的形成,提高了碳化铁在H_2O氧化过程中的稳定性;SiO_2助剂的加入显著抑制了催化剂的碳化,但可有效提高碳化铁以及碳物种的稳定性。  相似文献   

12.
高芳芳  王洪  青明  杨勇  李永旺 《催化学报》2013,34(7):1312-1325
在Fe基模型催化剂上,通过先深度还原后控制碳化的方法实现了物相结构的调控.采用X射线衍射、穆斯堡尔谱、程序升温脱附技术和激光拉曼光谱等方法表征了催化剂还原和反应前后的物化性质,并在固定床反应器中考察了不同条件活化后催化剂上费托反应性能.结果表明,H2还原后的催化剂主要由α-Fe相组成,且随着还原温度的提高,α-Fe相的致密程度增加,平均晶粒尺寸增加,稳定性提高;再采用乙烯对H2还原后催化剂进行碳化,可有效控制α-Fe的碳化速度,使碳化过程主要发生在Fe晶粒表层,同时改变了催化剂在反应过程中的物相变化,乃至其催化性能.与纯H2或合成气气氛活化的催化剂相比,采用先H2还原后乙烯碳化的预处理方法能够明显提高催化剂的活性和稳定性.  相似文献   

13.
研究了还原温度对Fe-Mo催化剂性质及费托(F-T)合成性能的影响。采用N2物理吸附、X射线衍射、穆斯堡尔谱和H2程序升温脱附技术对催化剂进行了表征。结果表明,随还原温度升高,金属铁晶粒粒径增大,金属铁上的H2吸附量先升后降;催化剂还原度提高,反应态催化剂碳化铁含量递增。催化剂F-T合成性能在280 ℃、1.5 MPa、2 000 h-1、合成气H2/CO比为2.0条件下在固定床反应器中测试。反应结果表明,随还原温度提高,催化剂接近稳态时的活性和重质烃选择性(C5+)先升后降,而甲烷选择性则先降后升。350 ℃还原催化剂具有最佳F-T合成反应性能。  相似文献   

14.
Cobalt catalysts supported on a series of mesoporous SBA-15 materials isomorphically substituted with zirconium (Zr/Si atomic ratio = 1/20) with different pore sizes (5.7 nm, 7.8 nm, 11.6 nm, 17.6 nm) have been synthesized. The catalysts were characterized by transmission electron microscopy, 29Si solid state magic angle spinning (MAS) NMR, N2 adsorption-desorption measurements, X-ray powder diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, H2-temperature programmed desorption and O2 titrations. The results indicated that larger pore size led to weaker interactions between cobalt and the supports which lowered the temperature of both reduction steps (Co3O4→CoO and CoO→Co0). The catalytic performances of the catalysts in Fischer-Tropsch synthesis (FTS) were tested in a fixed bed reactor. It was found that the FTS catalytic activity and product selectivity depended strongly on the pore size of the catalysts. The catalyst with a pore size of 7.8 nm showed the best FTS activity, and the catalyst with a pore size of 17.6 nm showed the highest selectivity to C12–C20 and C20+ hydrocarbons.  相似文献   

15.
The stability and reactivity of ?, χ, and θ iron carbide phases in Fischer-Tropsch synthesis (FTS) catalysts as a function of relevant reaction conditions was investigated by a synergistic combination of experimental and theoretical methods. Combined in situ X-ray Absorption Fine Structure Spectroscopy/X-ray Diffraction/Raman Spectroscopy was applied to study Fe-based catalysts during pretreatment and, for the first time, at relevant high pressure Fischer-Tropsch synthesis conditions, while Density Functional Theory calculations formed a fundamental basis for understanding the influence of pretreatment and FTS conditions on the formation of bulk iron carbide phases. By combining theory and experiment, it was found that the formation of θ-Fe(3)C, χ-Fe(5)C(2), and ?-carbides can be explained by their relative thermodynamic stability as imposed by gas phase composition and temperature. Furthermore, it was shown that a significant part of the Fe phases was present as amorphous carbide phases during high pressure FTS, sometimes in an equivalent amount to the crystalline iron carbide fraction. A catalyst containing mainly crystalline χ-Fe(5)C(2) was highly susceptible to oxidation during FTS conditions, while a catalyst containing θ-Fe(3)C and amorphous carbide phases showed a lower activity and selectivity, mainly due to the buildup of carbonaceous deposits on the catalyst surface, suggesting that amorphous phases and the resulting textural properties play an important role in determining final catalyst performance. The findings further uncovered the thermodynamic and kinetic factors inducing the ?-χ-θ carbide transformation as a function of the carbon chemical potential μ(C).  相似文献   

16.
A systematic study was undertaken to investigate the effects of the manganese incorpo- ration manner on the textural properties,bulk and surface phase compositions,reduction/carburization behaviors,and surface basicity of an iron-based Fischer-Tropsch synthesis(FTS)catalyst.The cata- lyst samples were characterized by N_2 physisorption,X-ray photoelectron spectroscopy(XPS),H_2(or CO)temperature-programmed reduction(TPR),CO_2 temperature-programmed desorption(TPD),and M(?)ssbauer spectroscopy.The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor(CSTR).The characterization results indicated that the manganese promoter incor- porated by using the coprecipitation method could improve the dispersion of iron oxide,and decrease the size of the iron oxide crystallite.The manganese incorporated with the impregnation method is enriched on the catalyst's surface.The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H_2,CO,and syngas because of the excessive enrichment of manganese on the catalyst surface.The catalyst added manganese using the coprecipitation method has the highest CO conversion(51.9%)and the lowest selectivity for heavy hydrocarbons(C_(12 )).  相似文献   

17.
Nanometric catalysts were synthesized through induction suspension plasma technology (SPS) for application in the Fischer–Tropsch synthesis (FTS). Carbon-supported single metal catalysts (Co/C, Fe/C), bimetallic formulations (Co–Fe/C), and ternary (Co–Fe–Mo and Co–Fe–Ni) systems have been considered in this work. SPS has been selected because it simultaneously allows for: (1) atomizing and generating metallic nanoparticles; (2) creating particularly Fe carbides, which are important in Fe-based FTS reaction mechanism; (3) in situ production of the nanometric graphitic-carbon matrix; and (4) saving time in catalyst synthesis, limiting sample preparation steps and eliminating post synthesis treatment before use. Porosity measurements by the Brunauer–Emmett–Teller method indicate that the samples are essentially non-porous. The synthesized catalysts characterized by X-ray Diffraction analysis show the presence of both metallic and carbidic species. The graphitic-carbon matrix has substantial structural defects that make it partly amorphous. Scanning Electron Microscopy analysis coupled with Energy Dispersive X-ray Spectroscopy mapping shows uniform dispersion of the metal moieties in the carbon support. Analysis by Transmission Electron Microscopy imaging displays metal nanoparticles with mean particle size within the 9–15 nm range enveloped in the carbon matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号