首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
 研究了 Mo 和 Cu 助剂对 FeK/SiO2 催化剂的性质及费托 (F-T) 合成性能的影响. 采用 N2 物理吸附、H2 程序升温还原、X 射线衍射、穆斯堡尔谱和 X 射线光电子能谱技术对催化剂进行了表征. 结果表明, Mo 加入后与 Fe 产生了较强的相互作用, 抑制了催化剂的还原和碳化; Cu 助剂的加入促进了催化剂的还原和碳化; 当 Mo 和 Cu 共同加入后, 催化剂的还原和碳化行为与单独加入 Cu 助剂时相似. 催化剂 F-T 合成性能在固定床上于 280 oC, 1.5 MPa, 2 000 h-1, H2/CO = 2.0 的合成气中测试. 结果表明, Mo 的加入降低了催化剂活性, 但提高了重质烃 (C5+) 的选择性; Cu 的添加提高了催化剂的活性, 但对稳定 C5+选择性作用不明显. Mo 和 Cu 共同加入后, 催化剂既表现出较为稳定的 C5+选择性, 同时其活性也没有降低.  相似文献   

2.
贾翠英  陈鑫  纪敏 《催化学报》2010,31(9):1122-1126
 以柠檬酸为络合剂, 采用溶胶-凝胶法制备了具有尖晶石结构的 MgFe0.1Al1.9O4 催化剂, 并将其用于催化乙苯与 CO2 氧化脱氢反应. 运用 X 射线衍射、X 射线能量色散光谱分析、红外光谱、热重-差热、N2 吸附-脱附和 H2 程序升温还原等技术对催化剂进行了表征. 结果表明, 在 650 ºC 以上焙烧即可制得结构确定、组成均一的 Mg-Fe-Al-O 复合氧化物催化剂, 其中 Fe 物种主要以同晶取代的形式存在于尖晶石骨架中. 随着焙烧温度的升高, 尖晶石结晶度提高, Fe 物种还原能力下降, 催化剂晶粒度增大, 比表面积降低. 700 ºC 焙烧制备的 MgFe0.1Al1.9O4 具有较好的催化乙苯与 CO2 氧化脱氢反应活性和稳定性.  相似文献   

3.
赵娇娇  余运波  韩雪  贺泓 《催化学报》2013,34(7):1407-1417
分别以La2O2CO3, CeO2, ZrO2和Al2O3为载体, 采用浸渍法制备了Ni基重整催化剂, 并以正十二烷模拟车载燃油进行催化重整反应以同时制备小分子碳氢化合物(HCs)和H2, 考察了其在4wt%Ag/Al2O3上选择性催化还原(HC-SCR)氮氧化物(NOx)的性能. 采用N2吸附-脱附、X射线粉末衍射、H2程序升温还原和热重等手段对Ni基催化剂进行了表征. 结果表明, 随着重整催化剂氧化还原性能增强, 产物中H2浓度增加, 可参与SCR反应的HCs含量减少, 从而导致重整-SCR耦合体系上NOx净化活性温度窗口向低温移动, NOx最高转化率降低. Ni/ZrO2+Ag/Al2O3耦合体系中H2/HCs符合SCR反应所需的最优比例, 在柴油车典型排气温度范围内表现出良好的NOx净化能力. 同时, 在Ni/ZrO2+Ag/Al2O3耦合体系上考察了其燃油重整-SCR的活性稳定性. 结果显示, 重整催化剂的耐久性有待进一步提高.  相似文献   

4.
以铈锆固溶体(Ce0.5Zr0.5O2)修饰的高比表面积SiC为载体,采用两步浸渍法制备了Ni、Fe和Co基催化剂,研究了其在煤层气催化燃烧脱氧中的催化活性和稳定性. 利用X射线衍射(XRD)、X射线光电子能谱(XPS)、电感耦合等离子体质谱(ICP-MS)、高分辨透射电子显微镜(HRTEM)、比表面积(BET)、热重分析(TGA)和H2程序升温还原(H2-TPR)对催化剂进行了表征. 分析结果表明,Ni、Fe和Co部分进入Ce0.5Zr0.5O2固溶体晶格内部,导致催化剂体相形成更多的缺陷;同时Ce0.5Zr0.5O2固溶体有助于加速金属氧化物和金属之间氧化还原过程的进行,促进了氧吸附、传输和对甲烷的活化. 另外,SiC和Ce0.5Zr0.5O2固熔体良好的抗积碳性能,有效避免了催化剂在富甲烷反应气氛中因积碳而失活,从而使三种催化剂均具有优良的催化燃烧脱氧活性和稳定性. 其中,Co/Ce0.5Zr0.5O2/SiC活性最高,可在320 ℃活化催化甲烷,并在410 ℃实现完全脱氧.  相似文献   

5.
目前Pt基催化剂被公认为是最高效的氧还原催化剂.我们采用了密度泛函理论研究了Pt掺杂5种不同氧化石墨烯和完美石墨烯在酸性环境中的氧还原反应机理,计算了氧还原反应中间体O2、O、OOH、OH、H2O和H2O2在不同掺杂石墨烯上的吸附性能、反应步骤与反应相对能量变化.结果表明,氧化石墨烯在O2的活化、中间体吸附、掺杂难度(缺陷形成能)、能带带隙以及在反应中相对能量的降低都优于完美石墨烯,我们的工作将有助于为将来在实验中选择和合成氧还原催化剂提供一定的理论指导意义.  相似文献   

6.
采用溶胶-凝胶法制备了一系列La1-xSrxNi1-yFeyO3 (x=0, 0.1, 0.2, 0.5; y=0~1.0)型的钙钛矿催化剂, 以活性碳为载体, PTFE乳液为粘接剂制备双功能氧电极. 对催化剂进行了XRD结构分析以及SEM分析和BET比表面积测量. 采用三电极体系测试了氧电极的稳态极化曲线和电化学交流阻抗谱并对其阴极极化和阳极极化的交流阻抗谱图进行分析. 通过等效电路的拟合研究了该系列双功能氧电极氧还原反应的工作机理. 实验表明对于LaNiO3化合物, B位掺杂可显著提高催化剂的电催化性能; 电极氧还原反应的极化主要由电荷转移反应和Nernstian扩散过程造成. 通过各个电极对于催化分解H2O2的分解速率常数的测定得知, Ni离子对于催化H2O2分解反应的活性大于Fe离子, 继续在对于氧还原反应和氧析出反应都具有较高电催化活性的LaNi0.8Fe0.2O3催化剂上进行A位掺杂Sr离子后显著提高了催化剂分解H2O2的催化活性, 主要是因为氧空位的增多和金属离子d电子含量的降低有利于催化分解H2O2的活性的提高, 但由于氧空位的增多导致催化剂电导率的降低, 所以其电催化活性降低了. 通过多圈循环伏安扫描的测试, 催化剂LaNi0.8Fe0.2O3有很好的稳定性.  相似文献   

7.
研究了钠、钾助剂对FeMn 合成低碳烯烃催化剂结构及性能的影响. 低温N2吸附、X射线光电子能谱(XPS)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、CO/CO2程序升温脱附(CO/CO2-TPD)、Mössbauer 谱和CO+H2反应的研究结果表明,增加Mn助剂含量促进了活性相的分散和低碳烯烃的生成,而过多锰助剂在催化剂表面的富集则降低了费托合成反应的CO转化率;钾助剂和钠助剂的加入均抑制了催化剂的还原并且促进了CO2和CO的吸附. 比较还原后(H2/CO摩尔比为20)和反应后(H2/CO摩尔比为3.5)催化剂的体相结构可以发现,在FeMn、FeMnNa和FeMnK催化剂中,由于钾助剂的碱性和CO吸附能力较强,因此体相中FeCx的含量相对较高;而活性测试结果表明,FeMnNa催化剂拥有最好的CO转化率(96.2%)和低碳烯烃选择性(30.5%,摩尔分数).  相似文献   

8.
采用共沉淀法制备了系列铜负载量不同的Cu/Fe2O3水煤气变换(WGS)催化剂,并考察了铜负载量对催化剂结构和水煤气变换反应性能的影响. 结果表明,Cu/Fe2O3催化剂呈现出良好的水煤气反应性能,当CuO质量分数为20%时,催化剂的WGS性能最优,250 ℃时CO转化率高达97.2%,同时热稳定性也最好. 运用X射线粉末衍射(XRD)、N2物理吸脱附和H2程序升温还原(H2-TPR)等手段对Cu/Fe2O3催化剂的物相、织构特征及还原性能进行了表征,结果表明,CuFe2O4物种的存在极大地改善了催化剂的还原性能和WGS反应活性. 这是由于CuFe2O4特殊的尖晶石结构有利于Cu微晶的稳定;同时,CuFe2O4在低温下即被还原为单质铜,有利于促进催化剂体系中电子的转移. 此外,通过(NH4)2CO3溶液处理,研究了独立相CuO对Cu/Fe2O3催化剂WGS反应性能的影响,结果发现,独立相CuO的存在,有利于H原子在各组分传递,从而促进催化剂的CuFe2O4的还原,改善Cu/Fe2O3催化剂的WGS反应性能.  相似文献   

9.
孙敬方  张雷  葛成艳  汤常金  董林 《催化学报》2014,35(8):1347-1358
采用固相浸渍法和常规湿浸渍法制备了一系列CuO/CeO2催化剂,并结合X射线衍射(XRD)、氢气-程序升温还原(H2-TPR)、激光拉曼光谱(LRS)、原位漫反射红外光谱(in situ DRIFTS)、X射线光电子能谱(XPS)等手段考察了制备方法对催化剂结构性质及其在CO氧化反应中性能的影响. XPS和H2-TPR结果表明,固相浸渍法更有利于得到高分散的铜物种,并促进CuO物种的还原. LRS结果表明,相比于湿浸渍法,固相浸渍法能产生更多氧空位,而这些氧空位可以活化参与反应的O2. CO氧化活性测试结果表明,当铜负载量相同时,固相浸渍法制备的催化剂相比于湿浸渍法表现出更好的催化性能. 结合多种表征结果发现,催化剂CO氧化性能与其表面氧空位和Cu+-CO浓度紧密相关,提出了CuO/CeO2催化剂在CO氧化反应中可能的协同作用机制.  相似文献   

10.
CuFe-SAPO-34分子筛的结构和催化性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用一步水热合成法,通过调变初始凝胶中的硅铁比,制备系列铜铁含量不同的CuFe-SAPO-34催化剂用于NH3选择性催化还原NOx反应(NH3-SCR),并采用ICP、XRD、SEM、BET、H2-TPR等方法对其结构进行表征.结果表明,CuFe-SAPO-34催化剂具有典型的CHA结构,Cu和Fe均处于分子筛载体的离子交换位.当初始凝胶SiO2/Fe2O3=10时,Cu2.5Fe3.1-SAPO-34催化剂具有最大的比表面积和孔容.掺杂适量的Fe,可提高活性物种Cu2+的比例及其氧化还原性能,显著降低Cu物种的聚集程度.NH3-SCR反应结果表明,Cu2.5Fe3.1-SAPO-34催化剂具有最宽的反应温度窗口.与Cu-SAPO-34相比,Fe的掺杂显著提高了其高温段的催化活性和低温抗水能力,提高了Cu-CHA催化剂在实际应用中的稳定性.  相似文献   

11.
定明月  杨勇  相宏伟  李永旺 《催化学报》2010,31(9):1145-1150
 采用连续共沉淀和喷雾干燥相结合的方法制备了微球形 Fe 基催化剂, 采用 N2 吸附-脱附、X 射线衍射和穆斯堡尔谱等手段, 考察了催化剂在不同还原条件下铁物相的转变, 并在浆态床反应器中评价了催化剂的费-托合成 (FTS) 反应性能. 结果表明, Fe 基催化剂在合成气气氛下首先从α-Fe2O3 转变为 Fe3O4, 然后转变为铁碳化物 (FexC); 还原压力的增大有利于 α-Fe2O3 向 Fe3O4 的转变, 而抑制 Fe3O4 向 FexC 的转变; 还原空速的增加则促进 Fe3O4 转变为 FexC. 催化剂的 FTS 反应活性随着催化剂中 Fe3O4 含量的增加而逐渐下降, 而随着 FexC 含量的增加而逐渐上升.  相似文献   

12.
The effects of Manganese(Mn)incorporation on a precipitated iron-based Fischer-Tropsch synthesis(FTS)catalyst were investigated using N_2 physical adsorption,air differential thermal analysis (DTA),H_2 temperature-programmed reduction(TPR),and M(?)ssbauer spectroscopy.The FTS perfor- mances of the catalysts were tested in a slurry phase reactor.The characterization results indicated that Mn increased the surface area of the catalyst,and improved the dispersion ofα-Fe_2O_3 and reduced its crystallite size as a result of the high dispersion effect of Mn and the Fe-Mn interaction.The Fe-Mn inter- action also suppressed the reduction ofα-Fe_2O_3 to Fe_3O_4,stabilized the FeO phase,and(or)decreased the carburization degree of the catalysts in the H_2 and syngas reduction processes.In addition,incorporated Mn decreased the initial catalyst activity,but improved the catalyst stability because Mn restrained the reoxidation of iron carbides to Fe_3O_4,and improved further carburization of the catalysts.Manganese suppressed the formation of CH_4 and increased the selectivity to light olefins(C_(2-4)~=),but it had little effect on the selectivities to heavy(C_(5 )) hydrocarbons.All these results indicated that the strong Fe-Mn interaction suppressed the chemisorptive effect of the Mn as an electronic promoter,to some extent,in the precipitated iron-manganese catalyst system.  相似文献   

13.
研究了Ni助剂对共沉淀型FeMnK/SiO2催化剂的结构性质和还原炭化行为的影响。结果表明,添加少量Ni助剂提高了催化剂的比表面积,降低了平均孔径,促进了催化剂中铁氧化物的分散。在H2-TPR中,Ni助剂降低了催化剂的还原温度;在CO-TPR中,Ni助剂使催化剂的还原和炭化峰前移,提高了氧的移除速率,增加了碳的引入量;在合成气等温还原中,Ni助剂提高了催化剂的活化速率,在相同的还原时间内可获得更高的F-T合成反应活性。  相似文献   

14.
Cobalt catalysts supported on a series of mesoporous SBA-15 materials isomorphically substituted with zirconium (Zr/Si atomic ratio = 1/20) with different pore sizes (5.7 nm, 7.8 nm, 11.6 nm, 17.6 nm) have been synthesized. The catalysts were characterized by transmission electron microscopy, 29Si solid state magic angle spinning (MAS) NMR, N2 adsorption-desorption measurements, X-ray powder diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, H2-temperature programmed desorption and O2 titrations. The results indicated that larger pore size led to weaker interactions between cobalt and the supports which lowered the temperature of both reduction steps (Co3O4→CoO and CoO→Co0). The catalytic performances of the catalysts in Fischer-Tropsch synthesis (FTS) were tested in a fixed bed reactor. It was found that the FTS catalytic activity and product selectivity depended strongly on the pore size of the catalysts. The catalyst with a pore size of 7.8 nm showed the best FTS activity, and the catalyst with a pore size of 17.6 nm showed the highest selectivity to C12–C20 and C20+ hydrocarbons.  相似文献   

15.
The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversion of syngas(H~(2+) CO) to hydrocarbons by Fischer-Tropsch synthesis(FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area,X-ray diffraction(XRD),transmission electron microscopy(TEM),temperature programmed reduction(TPR),X-ray photoelectron spectroscopy(XPS),differential thermal analysis(DTA) and thermogravimetric analysis(TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixedbed microreactor(H_2/CO of 2 ∶1,230 ℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co_3O_4 nanoparticles(10.9%) and the Co_3O_4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion(70.3%) and selectivity toward C_(6-18)(JP-8,Jet A and diesel) than the Co/NS catalyst(C_(6-14))(JP-4).  相似文献   

16.
以对苯二甲酸(H2BDC)为配体、乙酸钴为Co源、水作溶剂,通过共沉淀法合成了金属有机框架材料(Co-BDC MOFs);以其为前驱体分别在乙炔和氩气氛下采用化学气相沉积法制备了核壳结构Co@C催化剂。结合XRD、氮吸附、SEM、TEM、XPS、TGA和Raman光谱等手段对Co@C催化剂的结构和组成进行了表征,考察了该催化剂在费托合成反应中的活性及稳定性。结果表明,炭化气氛对炭层结构的石墨化程度有较大影响,而对金属Co核的物相结构和粒径影响较小;乙炔气氛有助于形成多孔的石墨炭壳,从而促进烃链的生长,Co@C-C2H2催化剂上的C5+烃产物选择性高达82.66%,反应过程中催化剂物相由单相金属Co转变为金属Co与Co2C的混合相,且无失活现象发生,表明Co2C具有较高的费托反应催化活性。  相似文献   

17.
A series of 3 wt% Ru embedded on ordered mesoporous carbon (OMC) catalysts with different pore sizes were prepared by autoreduction between ruthenium precursors and carbon sources at 1123 K. Ru nanoparticles were embedded on the carbon walls of OMC. Characterization technologies including power X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR) were used to scrutinize the catalysts. The catalyst activity for Fischer-Tropsch synthesis (FTS) was measured in a fixed bed reactor. It was revealed that 3 wt% Ru-OMC catalysts exhibited highly ordered mesoporous structure and large surface area. Compared with the catalysts with smaller pores, the catalysts with larger pores were inclined to form larger Ru particles. These 3 wt% Ru-OMC catalysts with different pore sizes were more stable than 3 wt% Ru/AC catalyst during the FTS reactions because Ru particles were embedded on the carbon walls, suppressing particles aggregation, movement and oxidation. The catalytic activity and C5+ selectivity were found to increase with the increasing pore size, however, CH4 selectivity showed the opposite trend. These changes may be explained in terms of the special environment of the active Ru sites and the diffusion of products in the pores of the catalysts, suggesting that the activity and hydrocarbon selectivity are more dependent on the pore size of OMC than on the Ru particle size.  相似文献   

18.
In order to increase the catalyst activity for Fischer–Tropsch synthesis (FTS), the preparation methods of two new catalysts were studied. The chemically identical bimetallic Co–Mn/Al2O3 catalysts were synthesized by different synthetic methods: (a) via thermal decomposition of the complex [Co1.33Mn0.667(C7H3NO4)2(H2O)5].2H2O ( 1 ) and (b) by the impregnation technique. The complex was characterized by the single‐crystal analysis, elemental analysis, and Fourier‐transform infrared (FT‐IR) spectroscopy. Both catalysts were characterized by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectrometry (EDS), Brunauer–Emmett–Teller (BET) specific surface area, hydrogen temperature‐programmed reduction (H2‐TPR), and H2‐chemisorption. The catalysts' activity was investigated for the Fischer–Tropsch synthesis in a fixed bed microreactor. Higher activity was obtained for the catalyst prepared by thermal decomposition of the inorganic precursor due to its small particle size, superior dispersion, and higher surface area. The results show that the catalyst prepared thermal decomposition has 21% ethylene, 10% propylene, and 50% C5+ selectivity, while methane selectivity of this catalyst is 11% at 250°C. On the other hand, the catalyst obtained by the impregnation method displays 15% ethylene, 8% propylene, 29% C5+, and 29% methane selectivity at the same temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号