首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   

2.
This paper deals with the textural, microstructural and interfacial properties of Au/TiO(2) nanocomposites, in relation to their photocatalytic activity for splitting of water. TiO(2) samples of two different morphologies were employed for dispersing different cocatalysts, such as: Au, Pt, Ag or Cu, for the sake of comparison. The samples were characterized using powder XRD, XPS, UV-visible, thermoluminescence, SEM, HRTEM and SAED techniques. Compared to other metal/TiO(2) photocatalysts, Au/TiO(2) with an optimum gold loading of 1 wt% was found to exhibit considerably higher activity for visible light induced production of H(2) from splitting water in the presence of methanol. Further, the sol-gel prepared TiO(2) (s.TiO(2)), having spherical grains of 10-15 nm size, displayed better photoactivity than a Degussa P25 catalyst. The electron microscopy investigations on s.TiO(2) revealed significant heterogeneity in grain morphology of individual TiO(2) particles, exposure of the lattice planes, metal dispersion, and the interfacial metal/TiO(2) contacts. The gold particles were found to be in a better dispersed state. O(2) TPD experiments revealed that the gold nanoparticles and Au/TiO(2) interfaces may serve as distinct binding sites for adsorbate molecules. At the same time, our thermoluminescence measurements provide an insight into Au-induced new defect states that may facilitate the semiconductor-to-metal charge transfer transition. In conclusion, the superior photocatalytic activity of Au/TiO(2) may relate to the grain morphology of TiO(2), dispersion of gold particles, and the peculiar architecture of metal/oxide heterojunctions; giving rise in turn to augmented adsorption of reactant molecules and their interaction with the photo-generated e(-)/h(+) pair. The role played by methanol as a sacrificial reagent in photocatalytic splitting of water is discussed.  相似文献   

3.
The presence of sulfide/polysulfide redox couple is crucial in achieving stability of metal chalcogenide (e.g., CdS and CdSe)-based quantum dot-sensitized solar cells (QDSC). However, the interfacial charge transfer processes play a pivotal role in dictating the net photoconversion efficiency. We present here kinetics of hole transfer, characterization of the intermediates involved in the hole oxidation of sulfide ion, and the back electron transfer between sulfide radical and electrons injected into TiO(2) nanoparticles. The kinetic rate constant (10(7)-10(9) s(-1)) for the hole transfer obtained from the emission lifetime measurements suggests slow hole scavenging from CdSe by S(2-) is one of the limiting factors in attaining high overall efficiency. The presence of the oxidized couple, by addition of S or Se to the electrolyte, increases the photocurrent, but it also enhances the rate of back electron transfer.  相似文献   

4.
TiO2具有高效、廉价、无毒及光化学稳定性好等优点,因而被广泛应用于光能转化和利用领域,如太阳能电池、光催化分解水制氢和环境污染物降解等.但是,TiO2仍然存在一些缺陷制约了其应用,其中,最关键的问题是光生电荷分离效率低.因此,人们对其进行了掺杂、异质结构建和Z型结构建等来解决这一问题,其中Z型结近年来备受关注.全固体Z型结的构建目前主要有两种方式:PSI-C-PSII和PSI-PSII.前者PSI与PSII间要插入中间导电层(如Au、rGO等)来实现界面欧姆接触;后者则无中间层,而是基于界面设计来实现欧姆接触.本文以构建PSI-PSII Z型结为目标,以TiO2和WO3为基础半导体材料,采用原位溶剂热生长的方法构建WO3量子点/TiO2结构,借助氢气还原反应在界面处引入氧缺陷.采用透射电子显微镜、X射线衍射和拉曼光谱研究了复合晶体结构,采用X射线光电子能谱、紫外可见光谱和荧光光谱等手段研究了Z型结的界面结构和能带结构.结合光催化分解水产氢活性来建立Z型结结构与光催化性能的关联关系.表征结果表明,在TiO2上进行原位溶剂热成核反应可点缀WO3量子点,并且量子点粒径随W前驱体用量的增加而变大.两种半导体材料为TiO2锐钛矿和WO3晶体结构,且WO3的XRD特征峰和Raman特征吸收峰会随W前驱体用量增加而变大.通过对WO3/TiO2进行氢气还原处理,使其表面形成大量W5+和氧缺陷,一方面提高了催化剂对可见光的吸收,另一方面在界面形成欧姆接触,实现了Z型结构的构建.Z型结构实现了光催化分解水产氢反应,其中WTH10光催化活性最好.本文为新型Z型光催化剂的设计和构建提供了新思路和策略.  相似文献   

5.
Electron and hole transfer from indium phosphide quantum dots   总被引:1,自引:0,他引:1  
Electron- and hole-transfer reactions are studied in colloidal InP quantum dots (QDs). Photoluminescence quenching and time-resolved transient absorption (TA) measurements are utilized to examine hole transfer from photoexcited InP QDs to the hole acceptor N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and electron transfer to nanocrystalline titanium dioxide (TiO2) films. Core-confined holes are effectively quenched by TMPD, resulting in a new approximately 4-ps component in the TA decay. It is found that electron transfer to TiO2 is primarily mediated through surface-localized states on the InP QDs.  相似文献   

6.
TiO(2) particle-supported Au nanoparticles (NPs) with varying sizes and good contact (Au/TiO(2)) were prepared under a constant loading amount by the deposition-precipitation method. The Fermi energy of Au NPs loaded on TiO(2) at the photostationary state (E(F)') was determined in water by the use of S/S(2-) having specific interaction with Au as a redox probe. The E(F)' value goes up as the mean size of Au NPs (d) increases at 3.0 相似文献   

7.
UV light irradiation of TiO(2) (λ > 320 nm) in a mixed solution of AgNO(3) and S(8) has led to the formation of Ag(2)S quantum dots (QDs) on TiO(2), while Ag nanoparticles (NPs) are photodeposited without S(8). Photoelectrochemical measurements indicated that the Ag(2)S photodeposition proceeds via the preferential reduction of Ag(+) ions to Ag(0), followed by the chemical reaction with S(8). The application of this in situ photodeposition technique to mesoporous (mp) TiO(2) nanocrystalline films coated on fluorine-doped SnO(2) (FTO) electrodes enables formation of Ag(2)S QDs (Ag(2)S/mp-TiO(2)/FTO). Ag(2)S/mp-TiO(2)/FTO has the interband transition absorption in the whole visible region, while in the spectrum of Ag/mp-TiO(2)/FTO, a localized surface plasmon resonance absorption of Ag NPs is present centered at 490 nm. Ag(2)S QD-sensitized photoelectrochemical cells using the Ag(2)S/mp-TiO(2)/FTO and Ag/mp-TiO(2)/FTO photoanodes were fabricated. Under illumination of one sun, the Ag(2)S photoanode cell yielded H(2) at a rate of 0.8 mL·h(-1) with a total conversion efficiency of 0.29%, whereas the Ag/mp-TiO(2)/FTO photoanode is inactive.  相似文献   

8.
Interfacial charge-transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the energy levels of a metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here we utilize a previously published model (J. Phys. Chem. B 2005, 109, 10251) to predict the energetics of IFCTA spectra for semiconductors and compare literature observations to these predictions for n-type semiconductors (largely TiO2). In contrast to metals, where IFCTA has been only rarely observed, new absorption features due to IFCTA are common for semiconductors such as TiO2. At issue is whether the electron accepting states in the TiO2 are localized or delocalized over the conduction band.  相似文献   

9.
陈伟  李旦振  何顺辉  邵宇  黄艳  付贤智 《催化学报》2010,26(8):1037-1043
 采用过饱和沉淀法合成 n(Mg)/n(Al) = 2 的 Mg-Al 类水滑石化合物 (Mg-Al-HT), 再用水热法将它与钛胶复合, 制得 Mg-Al-HT/TiO2 异质复合光催化剂. 采用 X 射线粉末衍射、透射电子显微镜、场发射扫描电子显微镜、低温 N2 吸附-脱附、紫外-可见漫反射光谱和热重等技术对催化剂结构、成分和性质进行了表征. 结果表明, 在波长 365 nm 的紫外光照射降解苯的反应中, Mg-Al-HT/TiO2 异质复合光催化剂表现出优于单一的 TiO2 或 Mg-Al-HT 催化剂的光催化活性, 且稳定性更高; 同时讨论了该复合催化剂性能优异的原因. 另外, 运用电子顺磁共振技术检测到体系中存在羟基自由基等活性物种, 并据此提出了 Mg-Al-HT/TiO2 异质复合纳米晶催化剂光催化降解苯的反应机理.  相似文献   

10.
We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time-resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine-captured CO2, namely carbamates, for direct photochemical conversion without additional energy input.  相似文献   

11.
We report herein a methodology for conformally coating nanocrystalline TiO2 films with a thin overlayer of a second metal oxide. SiO2, Al2O3, and ZrO2 overlayers were fabricated by dipping mesoporous, nanocrystalline TiO2 films in organic solutions of their respective alkoxides, followed by sintering at 435 degrees C. These three metal oxide overlayers are shown in all cases to act as barrier layers for interfacial electron transfer processes. However, experimental measurements of film electron density and interfacial charge recombination dynamics under applied negative bias were vary significantly for the overlayers. A good correlation was observed between these observations and the point of zero charge of the different metal oxides. On this basis, it is found that the most basic overlayer coating, Al2O3 (pzc = 9.2), is optimal for retarding interfacial recombination losses under negative applied bias. These observations show good correlation with current/voltage analyses of dye sensitized solar cell fabricated from these films, with the Al2O3 resulting in an increase in V(oc) of up to 50 mV and a 35% improvement in overall device efficiency. These observations are discussed and compared with an alternative TiCl4 posttreatment of nanocrystalline TiO2 films with regard to optimizing device efficiency.  相似文献   

12.
Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究   总被引:29,自引:1,他引:29  
采用溶胶凝胶法制备了Fe^3 /V^5 /TiO2复合纳米微粒作为光催化剂。光降解反应结果表明,其掺杂催化剂Fe^3 /V^5 /TiO2的光催化活性明显提高。光电化学研究显示,铁离子可以成为电荷陷阱,促进空穴的界面传递反应。适量钒离子掺杂使TiO2电极的光电流升高,导带中电子浓度的增大,加快了界面的电子传递反应。共掺杂催化剂中,Fe^3 、V^5 分别提供了空穴与电子的陷阱,同时加快了电子与空穴的界面传递反应,从 更有效地提高光催化活性。双组份共掺杂为提高TiO2光催化活性提供新的途径。  相似文献   

13.
Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a hierarchical rapid electron transfer model can be adapted to other nanostructures as well, as they can favorably impact photoelectrochemical performance.  相似文献   

14.
How to extend ultraviolet photocatalysts to the visible‐light region is a key challenge for solar‐driven photocatalysis. Herein, we show that ultraviolet ZnO photocatalysts can present high visible‐light photocatalytic activity when combined with CuO quantum dots (QDs; <3 nm). Theoretical analysis demonstrates that the quantum size effect plays a key role in the photoactivity of the CuO/ZnO composite. For CuO QDs smaller than 3 nm, the separated charges could transfer from CuO QDs to the conduction bands of ZnO due to quantum splitting of the CuO energy level and phonon compensation for the difference in the conduction band minimum of CuO and ZnO; however, this process would not occur with the disappearance of the quantum size effect. Further structural analysis demonstrates that interfacial charge separation and transfer between ZnO and CuO dominate the photocatalytic processes instead of a single CuO or ZnO surface. Compared with ZnO? noble metal structures (e.g., ZnO? Ag or ZnO? Au), these ZnO? CuO QD composites present wider absorption bands, higher visible photocatalytic efficiencies, and lower costs.  相似文献   

15.
Inspired by natural photosynthesis, Z‐scheme photocatalytic systems are very appealing for achieving efficient overall water splitting. Developing metal‐free Z‐scheme photocatalysts for overall water splitting, however, still remains challenging. The construction of polymer‐based van der Waals heterostructures as metal‐free Z‐scheme photocatalytic systems for overall water splitting is described using aza‐fused microporous polymers (CMP) and C2N ultrathin nanosheets as O2‐ and H2‐evolving catalysts, respectively. Although neither polymer is able to split pure water using visible light, a 2:1 stoichiometric ratio of H2 and O2 was observed when aza‐CMP/C2N heterostructures were used. A solar‐to‐hydrogen conversion efficiency of 0.23 % was determined, which could be further enhanced to 0.40 % by using graphene as the solid electron mediator to promote the interfacial charge‐transfer process. This study highlights the potential of polymer photocatalysts for overall water splitting.  相似文献   

16.
Improving the stability of lead halide perovskite quantum dots (QDs) in a system containing water is the key for their practical application in artificial photosynthesis. Herein, we encapsulate low‐cost CH3NH3PbI3 (MAPbI3) perovskite QDs in the pores of earth‐abundant Fe‐porphyrin based metal organic framework (MOF) PCN‐221(Fex) by a sequential deposition route, to construct a series of composite photocatalysts of MAPbI3@PCN‐221(Fex) (x=0–1). Protected by the MOF the composite photocatalysts exhibit much improved stability in reaction systems containing water. The close contact of QDs to the Fe catalytic site in the MOF, allows the photogenerated electrons in the QDs to transfer rapidly the Fe catalytic sites to enhance the photocatalytic activity for CO2 reduction. Using water as an electron source, MAPbI3@PCN‐221(Fe0.2) exhibits a record‐high total yield of 1559 μmol g?1 for photocatalytic CO2 reduction to CO (34 %) and CH4 (66 %), 38 times higher than that of PCN‐221(Fe0.2) in the absence of perovskite QDs.  相似文献   

17.
The kinetics and the mechanism of various multielectron transfer reactions initiated by stored electrons in TiO(2) nanoparticles have been investigated employing the stopped flow technique. Moreover, the optical properties of the stored electrons in the TiO(2) nanoparticles have been studied in detail following the UV (A) photolysis of deaerated aqueous suspensions of TiO(2) nanoparticles in the presence of methanol. The reduction of common electron acceptors that are often present in photocatalytic systems such as O(2), H(2)O(2), and NO(3)(-) has been investigated. The experimental results clearly show that the stored electrons reduce O(2) and H(2)O(2) to water by multielectron transfer processes. Moreover, NO(3)(-) is reduced via the transfer of eight electrons evincing the formation of ammonia. On the other hand, the reduction of toxic metal ions, such as Cu(II), has been studied mixing their respective anoxic aqueous solutions with those containing the electrons stored in the TiO(2) particles. A two-electron transfer is found to occur, indicating the reduction of the copper metal ion into its non toxic metallic form. Other metal ions, such as Zn(II) and Mn(II), could not be reduced by TiO(2) electrons, which is readily explained on the bases of their respective redox potentials. The underlying reaction mechanisms are discussed in detail.  相似文献   

18.
乙二醇是非常重要的基础化学品,不仅可以作为合成聚合物(如聚对苯二甲酸乙二醇酯)的重要单体,也可以用作防冻剂和燃料添加剂等,具有广泛的用途.乙二醇的年产量超过2500万吨,目前主要的工业合成路线是由石油衍生的乙烯通过环氧化制环氧乙烷,环氧乙烷再水解制乙二醇.甲醇是一种清洁的平台化合物,不仅可以由天然气和煤炭通过传统的合成气过程生产,也可以由生物质和CO2直接合成.直接以甲醇为原料是合成乙二醇的理想过程,但目前热催化还未实现该过程.通过太阳能驱动的C?H活化和C?C偶联过程,可以实现甲醇直接偶联制乙二醇的理想反应过程.光催化甲醇制乙二醇可以在十分温和的条件下进行,目前已报道的甲醇制乙二醇光催化剂均为硫化物半导体材料,如CdS,ZnS和Zn2In2S5,但硫化物存在的光腐蚀和毒性等问题迫使我们去发展一种更加稳定和环境友好的光催化剂.氧化物基半导体材料,如Ta2O5,TiO2,ZnO和WO3等,是一类相对硫化物半导体材料更加稳定的光催化材料,然而目前还没有氧化物基半导体光催化剂用于光催化甲醇制乙二醇的报道.本文率先将金属氧化物光催化剂Ta2O5,用于甲醇制乙二醇的光催化反应,实现了乙二醇的选择性合成.在单纯的Ta2O5催化剂上,乙二醇选择性可达73%.Ta2O5十分独特,可以实现甲醇的光催化C?C偶联制乙二醇,而其他金属氧化物光催化剂(如TiO2,ZnO,WO3和Nb2O5)光催化转化甲醇只生成甲醛和甲酸等C1产物.进一步通过简单、方便的氨气焙烧法,制备了一系列不同氮掺杂量的氧化钽(N-Ta2O5)催化剂.在未经助催化剂修饰的氮含量为2.3%的2%N-Ta2O5光催化剂上,乙二醇选择性为71%,生成速率可达4.0 mmol gcat?1 h?1,约为Ta2O5的9倍,同时显著高于已报道的未经助催化剂修饰的CdS催化剂性能.通过光电流、表面光电压谱和理论计算等方法系统地研究了氮掺杂氧化钽具有高的光催化甲醇制乙二醇性能的重要原因,发现氮掺杂氧化钽高的电荷分离能力是决定其具有高活性的关键因素.另一方面,氮掺杂氧化钽表现出了非常高的反应稳定性,在超过160 h的循环测试过程中,乙二醇的生成速率基本保持不变,这是目前已报道的金属硫化物光催化剂所未能实现的.在长达60 h的反应过程中,未经助催化剂修饰的2%N-Ta2O5催化剂上乙二醇生成量基本随时间线性增长,收率可达3.6%.进一步研究发现,钽基半导体材料(Ta2O5和N-Ta2O5)可以在保持甲醇羟基不变的情况下优先活化甲醇C?H键,生成羟甲基自由基(?CH2OH),随后羟甲基自由基经C?C偶联生成乙二醇.钽基半导体光催化剂是一种环境友好且十分稳定的甲醇光催化偶联制乙二醇的优异催化剂,未来基于该类催化剂不仅有希望发展出更加高效、稳定的甲醇制乙二醇光催化剂,还有希望为更广的羟基存在下的C?H键选择性活化反应过程设计高效稳定的催化剂提供借鉴和指导.  相似文献   

19.
[Sn(acac)(2)]Cl(2) is chemisorbed on the surfaces of anatase TiO(2)via ion-exchange between the complex ions and H(+) released from the surface Ti-OH groups without liberation of the acetylacetonate ligand (Sn(acac)(2)/TiO(2)). The post-heating at 873 K in air forms tin oxide species on the TiO(2) surface in a highly dispersed state on a molecular scale ((SnO(2))(m)/TiO(2)). A low level of this p block metal oxide surface modification (~0.007 Sn ions nm(-2)) accelerates the UV-light-activities for the liquid- and gas-phase reactions, whereas in contrast to the surface modification with d block metal oxides such as FeO(x) and NiO, no visible-light response is induced. Electrochemical measurements and first principles density functional theory (DFT) calculations for (SnO(2))(m)/TiO(2) model clusters (m = 1, 2) indicate that the bulk (TiO(2))-to-surface interfacial electron transfer (BS-IET) enhances charge separation and the following electron transfer to O(2) to increase the photocatalytic activity.  相似文献   

20.
A nanoarchitectural approach based on in situ formation of quantum dots (QDs) within/outside clay nanotubes was developed. Efficient and stable photocatalysts active under visible light were achieved with ruthenium-doped cadmium sulfide QDs templated on the surface of azine-modified halloysite nanotubes. The catalytic activity was tested in the hydrogen evolution reaction in aqueous electrolyte solutions under visible light. Ru doping enhanced the photocatalytic activity of CdS QDs thanks to better light absorption and electron–hole pair separation due to formation of a metal/semiconductor heterojunction. The S/Cd ratio was the major factor for the formation of stable nanoparticles on the surface of the azine-modified clay. A quantum yield of 9.3 % was reached by using Ru/CdS/halloysite containing 5.2 wt % of Cd doped with 0.1 wt % of Ru and an S/Cd ratio of unity. In vivo and in vitro studies on the CdS/halloysite hybrid demonstrated the absence of toxic effects in eukaryotic cells and nematodes in short-term tests, and thus they are promising photosensitive materials for multiple applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号