首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
没食子酸铋锆的制备、表征及其燃烧催化作用   总被引:2,自引:0,他引:2  
以没食子酸、硝酸铋和硝酸氧锆为原料, 首次合成出了双金属有机盐——没食子酸铋锆, 采用有机元素分析、X射线荧光(XRF)光谱和傅里叶变换红外(FTIR)光谱对其进行了表征. 在程序升温条件下, 利用热重(TG)分析、差示扫描量热法(DSC)、固相原位反应池/FTIR 联用技术, 研究了没食子酸铋锆的热行为和热分解机理,描述了没食子酸铋锆的热分解过程, 分析得出其最终分解产物为Bi2O3、ZrO2和C. 利用螺压工艺制备了含没食子酸铋锆的推进剂样品, 研究了没食子酸铋锆对双基(DB)推进剂燃烧性能的影响, 分析了其燃烧催化作用. 结果表明, 没食子酸铋锆对双基推进剂的燃烧具有良好的催化作用, 是一种高效的燃烧催化剂; 没食子酸铋锆热分解的最终产物是催化燃烧的主要物质, 锆和碳则起辅助催化的作用.  相似文献   

2.
采用TG-DTG和DSC技术研究了含二缩三乙二醇二硝酸酯(TEGDN)和硝化甘油(NG)的混合酯、硝化棉(NC)和用作燃烧催化剂的柠檬酸镧组成的双基推进剂在常压和流动态氮气气氛下的非等温热分解反应动力学. 结果表明, 该双基推进剂的热分解过程存在2个失重阶段: 第I失重阶段为混合酯的挥发分解过程; 第II失重阶段为主放热分解反应, 机理服从三级化学反应, 减速型α-t曲线, 动力学参数: Ea=231.14 kJ·mol-1, A=1023.29 s-1, 动力学方程为dα/dt=1022.99(1-α)3 e-2.78×104/T. 由外推起始点温度(Te)和峰顶温度(Tp)计算得出该双基推进剂的热爆炸临界温度值分别为Tbe=463.62 K, Tbp=477.88 K. 反应的活化熵(⊿S)、活化焓(⊿H)和活化能(⊿G)分别为219.75 J·mol-1·K-1, 239.23 kJ·mol-1和135.96 kJ·mol-1.  相似文献   

3.
超级铝热剂的制备、表征及其燃烧催化作用   总被引:3,自引:0,他引:3  
用纳米铝粉和纳米氧化铅、纳米氧化铜和纳米三氧化二铋为原料,采用超声分散复合的方法,制备了纳米超级铝热剂Al/PbO、Al/CuO和Al/Bi2O3。采用X射线粉末衍射(XRD)、扫描电镜及能谱分析(SEM-EDS)和红外光谱(IR)对原料和产物的物相、组成、形貌和结构进行分析表征;运用差示扫描量热仪(DSC)评估三种超级铝热剂与双基推进剂主要组分的相容性;研究了3种超级铝热剂对双基推进剂燃烧性能的影响。结果表明,Al/PbO、Al/CuO和Al/Bi2O3与推进剂主要组分硝化棉(NC)、硝化棉/硝化甘油(NC/NG)混合物和吉纳(DINA)的相容性均良好,而与黑索今(RDX)和1,3-二甲基-1,3-二苯基脲(C2)相对较为敏感;含三种纳米超级铝热剂的双基推进剂表现出优异的燃烧性能。  相似文献   

4.
酒石酸铅锆的制备、表征及其燃烧催化作用   总被引:1,自引:0,他引:1  
以酒石酸、硝酸氧锆和硝酸铅为原料,合成出了双金属盐酒石酸铅锆,采用有机元素分析、X射线荧光光谱和FTIR对其进行了表征。在程序升温条件下,利用TG/DTG、DSC、固相原位反应池/FTIR联用技术,研究了酒石酸铅锆的热行为和热分解机理,描述了酒石酸铅锆的热分解过程,分析得出其最终分解产物为ZrO2、PbO和C。利用螺压工艺制备了含酒石酸铅锆的推进剂样品,研究了酒石酸铅锆对双基系推进剂燃烧性能的影响,分析了其燃烧催化作用。结果表明,酒石酸铅锆对双基系推进剂的燃烧具有良好的催化作用,是一种高效的燃烧催化剂;酒石酸铅锆热分解的最终产物PbO是催化燃烧的主要活性物质,推进剂燃烧过程中形成了氧化铅-铅循环催化体系,而锆和碳则起辅助催化的作用。  相似文献   

5.
采用柠檬酸燃烧法制备了CuO-ZnO-ZrO2(CZZ)催化剂,并将其用于CO2加氢合成甲醇反应.按推进剂化学原理对燃烧反应进行了分析,并采用热重-差热分析(TG-DTA)技术记录了其燃烧行为.采用X射线衍射(XRD)、氮吸附、程序升温还原(TPR)及氧化亚氮(N2O)反应吸附技术对制得的催化剂进行了表征.结果表明:柠檬酸燃烧法的燃烧过程比较温和,燃料用量对催化剂物化和催化性能的影响不大,并结合燃烧反应的特点进行了解释.此外,还对三种燃料(柠檬酸、尿素和甘氨酸)的用量与CZZ性能之间的关系进行了比较,表明柠檬酸作燃料具有更好的工艺可控性.柠檬酸燃烧法是一种简单、快速且有效的制备CZZ催化剂的方法.  相似文献   

6.
含CL-20的改性双基推进剂的热行为及非等温反应动力学   总被引:3,自引:0,他引:3  
用DSC和TG方法研究了含六硝基六氮杂异伍兹烷(CL-20)的改性双基推进剂在常压(0.1 MPa)和高压(4和7 MPa)下的热行为和高压下的热分解反应动力学. 结果表明, 该推进剂常压下DSC曲线有3个放热峰, 相应TG曲线有3个失重过程; 而高压下DSC曲线只有一个放热峰, 高压下放热峰的峰温随加热速率增大而升高. 高压下该推进剂放热分解反应机理和反应动力学参数受测试环境压强影响较弱, 反应机理是随机成核和随后生长, 放热分解反应的动力学方程可以表示为, 4 MPa时, dα/dt=1014.5(1-α)[-ln(1-α)]1/3e-17981.7/T; 7 MPa时, dα/dt=1014.7(1-α)·[-ln(1-α)]1/3e-18138.1/T.  相似文献   

7.
陈沛  赵凤起  罗阳  胡荣祖  郑玉梅  邓敏智  高茵 《化学学报》2004,62(13):1197-1204,J001
在程序升温条件下 ,用DSC ,TG ,慢速裂解 /傅里叶红外 ,研究了 2 羟基 3 ,5 二硝基吡啶铅盐 ( 2HDNPPb)和 4 羟基 3 ,5 二硝基吡啶铅盐 ( 4HDNPPb)的热行为、机理和动力学参数 ,提出了它们的热分解机理 ,计算了热爆炸临界温度 ,考察了它们对RDX改性双基推进剂的催化效果 .结果表明 :2HDNPPb和 4HDNPPb主放热分解反应的表观活化能和指前因子值分别为 2 5 2 .3 4kJ·mol-1,10 19.3 0 s-1和 187.3 9kJ·mol-1,10 13 .74s-1.由加热速率 β→ 0的DSC曲线的初始温度 (Te)和峰温 (Tp)算得 2HDNPPb和 4HDNPPb的热爆炸临界温度值分别为 3 2 7.64 ,3 3 6.5 7和 3 2 3 .90 ,3 3 3 .96℃ .2HDNPPb的热稳定性优于4HDNPPb .0 .1MPa时 ,它们的放热分解过程动力学方程可表示为 :  对 2HDNPPb  dα/dT =10 2 0 .48( 1-α) [-ln( 1-α) ] 3 /5e-3 .0 3 51× 10 4 /T  对 4HDNPPb  dα/dT =10 15.0 0 ( 1-α) [-ln( 1-α) ] 2 /3 e-2 .2 53 9× 10 4 /T对含RDX改性双基推进剂 ,它们都具有催化燃烧和降低压力指数的作用 .2HDNPPb的催化效果明显优于 4HDNPPb .羟基在分子中所处的不同位置是影响热稳定性和催化效果的主要因素  相似文献   

8.
制备了含3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)铅复合物(LCBTATZ)的双基推进剂和改性双基推进剂. 采用热重-微商热重法(TG-DTG)及差示扫描量热法(DSC)研究了其热分解行为和非等温分解动力学并在此基础上评价了其热安全性. 结果表明, LCBTATz-DB复合物中在350-540 K之间只存在一个放热分解峰, LCBTATz-CMDB复合物中存在两个连续的放热分解峰在390-540 K温度范围内, 其机理方程分别为: f(α)=α-1/2和f(α)=2(1-α)3/2. 计算了热加速分解温度(TSADT)、热爆炸临界温度(Tb)、热点火温度(TTIT)和绝热至爆时间(tTlad),其值分别为: DB001复合物TSADT=444.50 K, TTITT=453.96 K, Tb=471.84 K; tTlad=39.36 s; CMDB100复合物, TSADT=442.38 K, TTITT=452.89 K,Tb=464.13 K,tTlad=21.3 s,并以此来评价化合物的热安全性. 考察了LCBTATz-DB以及LCBTATz-CMDB的燃烧性能, 结果表明LCBTATZ 是一种高效的双基燃烧催化剂, 在较大的压力范围内可以显著的提高燃速并且大幅度的降低压力指数. 对于双基推进剂在2-8 MPa压力范围内出现了明显的超燃速现象, 8-12 MPa出现了“麦撒”效应, 对于改性双基推进剂的压力指数降到0.18.  相似文献   

9.
用3-硝基邻苯二甲酸、氢氧化钠和硝酸氧锆为原料,制备了3-硝基邻苯二甲酸锆,采用元素分析、X射线荧光衍射和FT-IR对其结构进行了表征.用TG-DTG以及变温固相原位反应池/傅里叶变换红外光谱(RSFT-IR)联用技术研究了3-硝基邻苯二甲酸锆的热分解机理,对主分解反应的DTG峰进行了数学处理,计算得到了动力学参数和动力学方程.结果表明,3-硝基邻苯二甲酸锆的分解反应总共有4个阶段,其中主分解反应发生在第2阶段,主分解反应的表观活化能Ea与指前因子A分别为158.84kJ·mol-1和109.85s-1,主分解阶段的反应机理服从一级Mample法则,主分解反应的动力学方程为dα/dt=109.85(1-α)e-1.91×104/T.  相似文献   

10.
利用分子动力学方法研究了著名的含能材料环三亚甲基三硝胺(RDX)、3,3′-双-(叠氮甲基)-氧杂环丁烷(BAMO)和RDX/BAMO推进剂. 结果表明, BAMO与RDX(010)面之间分子相互作用最强, 其次是(100)和(001)面. 以对相关函数g(r)描述了RDX和BAMO之间的相互作用. 计算了RDX/BAMO推进剂的弹性系数、模量、柯西压、泊松比等性能. 结果表明, BAMO的加入能够改善RDX的弹性力学性能, 相对改善效应的顺序为(100)>(001)>(010). RDX/BAMO推进剂的能量性能结果显示, BAMO的加入降低了RDX的比冲, 但仍高于著名的双基推进剂的比冲.  相似文献   

11.
The decomposition reaction kinetics of the double-base (DB) propellant (No. TG0701) composed of the mixed ester of triethyleneglycol dinitrate (TEGDN) and nitroglycerin (NG) and nitrocellulose (NC) with cerium(III) citrate (CIT-Ce) as a combustion catalyst was investigated by high-pressure differential scanning calorimetry (PDSC) under flowing nitrogen gas conditions. The results show that pressure (2 MPa) can decrease the peak temperature and increase the decomposition heat, and also can change the mechanism function of the exothermal decomposition reaction of the DB gun propellant under 0.1 MPa; CIT-Ce can decrease the apparent activation energy of the DB gun propellant by about 35 kJ mol−1 under low pressure, but it can not display the effect under high pressure; CIT-Ce can not change the decomposition reaction mechanism function under a pressure.  相似文献   

12.
Lead salt of 4-amino-3,5-dinitropyrazole (PDNAP) was synthesized from 4-amino-3,5-dinitropyrazole by the process of metathesis reaction, and its structure was characterized by IR, element analysis, TG, and DSC. The thermal decomposition kinetics and mechanism were studied by means of different heating rate differential scanning calorimetry (DSC) and thermolysis in situ rapid-scan FTIR simultaneous. The effects of PDNAP as an energetic combustion catalyst on the combustion performance of the solid propellant were studied. The results show that the peak temperature is 319.2 °C on DSC curve. The kinetic equation of major exothermic decomposition reaction is $ \frac{{\text{d}}\alpha}{{\text{d}}T} = \frac{{10^{15.45} }}{\beta }4(1 - \alpha )[ - \ln \left( {1 - \alpha } \right)]^{{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0pt} 4}}} \exp ({{ - 1.972 \times 10^{5} } \mathord{\left/ {\vphantom {{ - 1.972 \times 10^{5} } {RT}}} \right. \kern-0pt} {RT}}). $ The PDNAP is shown by IR spectroscopy to convert to PbO during the decomposition process. Combustion experiments show PDNAP can reduce the burning rate pressure exponent of the double-base or composite-modified double-base propellant.  相似文献   

13.
IntroductionCopper( ) salt of4- hydroxy- 3,5 - dinitropy-ridine( 4 HDNPCu) is an energetic material contain-ing energetic_ NO2 groups,which can be used asan energetic auxiliary catalyzer substituting the in-ertia copper salt to improve the catalysis of themain catalyzer( lead salt) in propellant[1] .Thermalbehavior is one of the most important aspects af-fecting its catalytic efficiency for propellant.How-ever,its kinetic parameters of thermal decomposi-tion and its application in RDX- co…  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - Catalytic effect of magnesium oxide nanoparticles (nano-MgO) on the thermal behavior and decomposition reaction kinetic of the double-base propellant...  相似文献   

15.
The Thermal Decomposition of Triple-Base Propellants   总被引:1,自引:0,他引:1  
The thermal decompositions of a double-base propellant (DB), five triple-base propellants (TB) and nitroguanidine (NGV) were examined. The kinetic parameters were evaluated using the ASTM, Kissinger, Rogers-Morris, Freeman-Carroll and Borchardt-Daniels methods. The values of the orders of some of the chemical reactions (n), like some values of activation energies (Ea), do not have any physical meaning, but they represent the manner of propellant decomposition and prove that the mechanism of the reaction changes during the decomposition process. As a result of this fact, differences appear in the evaluated kinetic parameters between various methods. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The thermal decomposition behavior of composite modified double-base propellant containing hexanitrohexaazaisowurtzitane (CL-20/CMDB propellant) was studied by microcalorimetry. The kinetic and thermodynamic parameters were obtained from the analysis of the heat flow curves. The effect of different proportion of CL-20 to the thermal decomposition behavior, kinetics, and thermal hazard was investigated at the same time. The critical temperature of thermal explosion (T b), the self acceleration decomposition temperature (T SADT), and the adiabatic decomposition temperature rise (??T ad) were calculated to evaluate the thermal hazard of the CL-20/CMDB propellant. It shows that the CMDB propellant with 38% CL-20 has relative lower values of E and lgA, and with 18% CL-20 has the highest potential hazard.  相似文献   

17.
The effect of MnC2O4 nanoparticles on the thermal decomposition of double-base propellant composed of nitrocellulose (NC) and triethylene glycol dinitrate (TEGDN) has been investigated by TG/DSC?CMS?CFTIR coupling technique. The results show that the decomposition of TEGDN/NC propellant has two stages, the first stage is the volatility and decomposition of TEGDN, the second is the decomposition of NC. The addition of MnC2O4 nanoparticles gets the onset temperature of first stage higher, and makes the activation energy of decomposition of TEGDN grow by about 20?C30?kJ/mol. The catalytic also accelerates the total weight loss, and makes the peak temperatures of DSC curves higher. The activation energy of the second stage has a decrease of 20?C40?kJ/mol. MS and FTIR analysis show that the catalyst gets the gas products of macromolecular significantly reduce, while small molecules increase significantly. It also results in the decrease of H2O, N2O, and NO2, and the increase of NO and HCN. Above all, the catalytic improves the thermal stability of TEGDN/NC propellant, make it more safety in storage, and make the decomposition easier and more thorough in main reaction zone.  相似文献   

18.
The thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature‐programmed mode have been investigated by means of DSC, TG‐DTG and lower rate Thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of the major exothermic decomposition reaction are 1‐a,207.98 kJ*mol?1 and 1015.64 s?1, respectively. The critical temperature of thermal explosion of the compound is 312.87 C. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as: dα/dT=1016.42 (1–α)e‐2.502×104/T As an auxiliary catalyst, the title compound can help the main catalyst lead salt of 4‐hydroxy‐3,5dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX‐CMDB propellant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号