首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
工业生产中妥布霉素发酵液粗提物的纯度只能达到50~60%,通常采用强酸树脂进行纯化,但纯化纯度很难达到国家药典要求。本文比较了5种阳离子交换树脂对妥布霉素的吸附性能,利用静态吸附与动态吸附实验优选出了大孔弱酸树脂HZ-3B,并对其纯化妥布霉素工艺进行了进一步的优化:选用浓度为5mg/m L,pH值为6.8~7.2的妥布霉素溶液以9BV/h的流速进行上样,上样200BV;然后利用0.125mol/L的氨水溶液作为解吸液,以6BV/h的流速进行解吸,合并解吸液。HPLC分析结果显示,妥布霉素纯度由50~60%提升到了97.15%,收率为89.52%,且无其他氨基糖苷类抗生素杂质,达到了国家药典的要求。  相似文献   

2.
通过亚临界水法提取桑叶中的1-脱氧野尻霉素(1-deoxynojirimycin)(DNJ)。比较AB-8树脂与732树脂以及这两种树脂联用对桑叶提取液中DNJ的纯化效果。结果表明,在洗脱剂为60%乙醇溶液、样品液pH值为7、吸附时间6h、解吸时间2h、动态吸附与解吸速度均为2BV/h的条件下,AB-8树脂的平衡吸附率为37.2%,解吸率为84.8%,所得DNJ含量为2.37mg/g,较原提取液提高2.9倍。在洗脱剂为0.5mol/L氨水溶液、样品液pH值为4、吸附时间8h、解吸时间4h、动态吸附与解吸速度均为2BV/h的条件下,732型阳离子树脂的平衡吸附率为31.3%,解吸率为78.1%,所得DNJ含量为3.134mg/g,较原提取液提高3.8倍。联合使用两种树脂,所得DNJ含量为9.48mg/g,较原提取液提高11.5倍。  相似文献   

3.
大孔阳离子交换树脂对奈替米星的吸附研究   总被引:1,自引:0,他引:1  
通过正交实验合成了9种大孔弱酸性阳离子交换树脂,筛选出具有最大动态饱和吸附量的FB-1树脂.采用红外光谱和热重分析的方法对其表征,并研究其对奈替米星的吸附及解吸性能,结果表明:该树脂对奈替米星的吸附符合Langrnuir吸附:用氨水做洗脱剂,0.3mol/L和0.4mol/L的氨水解吸率均达95%以上.FB-1与HD-2树脂比较:动态吸附量FB-1为398.0mg/mL湿树脂、HD-2为232.1mg/mL湿树脂;0.3mol/L氨水解吸,前者解吸率较后者高约15%.  相似文献   

4.
大孔阳离子交换树脂对井冈霉素的吸附研究   总被引:4,自引:0,他引:4  
比较了5种大孔树脂与常用的001×4凝胶树脂对井冈霉素的静态和动态吸附的性能实验,并选择了其中几种有代表性的树脂,研究其对井冈霉素的吸附特性及其机理.采用正交试验筛选出具有较大吸附量的大孔强酸性阳离子树脂HD-8,并对其工艺条件进行了优化,其较优吸附能力为15.34mg/ml树脂h;同时考察了HD-8树脂的解吸行为,发现用1mol/L的氨水:80%乙醇=1:1洗脱率为98.8%,洗脱效果明显.  相似文献   

5.
阳离子交换树脂二次纯化紫甘薯花色苷的研究   总被引:1,自引:0,他引:1  
采用阳离子交换树脂二次纯化紫甘薯花色苷。以紫甘薯花色苷的吸附率,解吸率和花色苷含量等为考察指标,确定了阳离子交换树脂二次纯化紫甘薯花色苷的工艺条件。研究结果表明,D061树脂对紫甘薯花色苷的吸附量大,解吸容易,可用于二次纯化紫甘薯花色苷的工业化生产,其工艺条件为:上样液的pH值为2.6,上样液吸光度值在0.6×100左右,上样流速为1.0BV/h,50%乙醇(含2%盐酸)为洗脱液,洗脱流速为0.5BV/h,用此工艺条件D061树脂吸附花色苷的吸附量为10.5mg/g,洗脱剂用量为3.0BV,花色苷的收率为82.99%。二次纯化后,紫甘薯花色苷的花色苷含量达到29.38%,色价高达136.80。  相似文献   

6.
离子交换法提取D-核糖的研究   总被引:2,自引:0,他引:2  
采用离子交换法提取D-葡萄糖发酵液中的D-核糖,其中Ca^2 型阳离子交换树脂具有良好的选择性,最佳吸附条件为25℃,以0.5BV/h的流速进行吸附,最佳解吸条件为80℃下,以0.5BV/h的流速进行解吸.解吸液浓缩后加入四倍量乙醇,可得到结晶D-核糖.  相似文献   

7.
通过静态吸附实验,研究了D-101大孔吸附树脂对黄花蒿黄酮的吸附热力学和动力学过程。结果表明,当温度在298~318K和在实验研究浓度范围内,D-101大孔吸附树脂对黄花蒿黄酮的吸附符合Freundlich等温吸附方程;ΔG0,吸附过程能自发进行;ΔH0,为放热过程;ΔS0,D-101大孔吸附树脂吸附黄花蒿黄酮的作用大于水的解吸过程,导致熵减。分别采用准一级动力学方程、准二级动力学方程和粒内扩散动力学模型探讨其吸附特性,研究结果表明,吸附过程符合准二级动力学方程,粒内扩散与膜扩散交互控制黄花蒿黄酮在D-101大孔吸附树脂上的吸附。  相似文献   

8.
耿爱芳  翟庆洲  刘恒  张轶楠 《应用化学》2017,34(11):1336-1342
为了探讨碧螺春茶叶用于吸附灿烂绿的可能性,研究了碧螺春绿茶吸附灿烂绿的最佳吸附条件及解吸附条件。研究结果表明,在吸附条件为当溶液起始p H值为4.1,茶叶与灿烂绿质量比为833∶1,接触时间为45 min,室温(25±1)℃时,茶叶对灿烂绿吸附率达80%,吸附量为0.96 mg/g。对Na OH、CH_3COOH和HCl3种解吸附剂的研究表明,最佳解吸附剂是Na OH,解吸1.5 h解吸率最高达93.20%。该吸附过程符合Langmuir等温吸附方程,属于单分子层吸附。吸附过程热力学参数自由能变化ΔG0,焓变ΔH=102.32 k J/mol0,熵变ΔS=0.33 k J/(mol·K)0,说明吸附过程是自发的吸热熵增过程。  相似文献   

9.
研究XAD-16树脂分离纯化怀菊花黄酮的工艺,探讨了吸附过程中树脂的等温吸附与吸附动力学,并应用Langmuir方程与Freundlich方程对吸附过程进行了拟合。确定了XAD-16树脂分离怀菊花黄酮的最佳工艺条件:上样浓度2.0mg/mL,上样流速1BV/h,冲洗杂质用水量11BV,洗脱剂为85%(体积分数)乙醇,洗脱流速2BV/h,洗脱剂体积5BV。此时总黄酮的解吸率为83.9%。在此条件下,经过XAD-16树脂分离纯化后,怀菊花总黄酮含量达到77.2%。  相似文献   

10.
采用强碱性阴离子交换树脂开展醇胺溶液中Cl~-的吸附脱除效果评价。结果表明,SA17阴离子交换树脂具有对Cl~-的吸附能力强、工作交换容量大和交换速度快的优点,是适宜的脱Cl~-吸附剂。空速υ=10h~(-1)时,前60min内,SA17树脂对溶液中Cl~-的脱除率高达99%,吸附穿透曲线符合Thomas模型;吸附等温线Freundlich模型能较好反映SA17树脂的吸附行为,速率控制步骤为液膜扩散。SA17树脂吸附Cl~-过程,ΔG0,该吸附过程可自发进行;ΔH0,说明吸附过程放热,焓变值为-23.22k J/mol,说明该吸附过程为物理吸附;ΔS0,说明该树脂吸附MDEA溶液中Cl~-是熵减过程。红外光谱和能谱分析结果表明,吸附后只是树脂N-OH中的OH-被Cl~-取代,并未改变树脂骨架和功能基团。  相似文献   

11.
201×7强碱性阴离子交换树脂吸附浓海水中溴的热力学研究   总被引:1,自引:0,他引:1  
研究了201×7强碱性阴离子交换树脂吸附浓海水中溴的热力学行为,测定了不同温度下的吸附等温线,并计算出吸附过程的热力学参数ΔG、ΔH和ΔS。研究表明,该树脂对溴的吸附容量为2.489mg Br2/mL湿树脂,吸附率达到98%;吸附平衡数据符合Langmuir吸附等温方程;ΔG为负值,该吸附过程可自发进行;ΔH>0,且其绝对值小于40kJ/mol,表明该吸附过程吸热且属于物理吸附;ΔS>0,该吸附过程属于熵增过程。  相似文献   

12.
大孔吸附树脂分离纯化金银花中黄酮类物质的研究   总被引:3,自引:0,他引:3  
比较了AB-8、S-8、NKA-9和D-101 4种大孔吸附树脂对金银花提取液中黄酮类物质的吸附及解吸附性能.在静态吸附试验基础上,筛选出效果较好的D-101树脂进行动态试验研究,结果表明,D-101树脂在30℃下对金银花黄酮类物质的静态吸附-动态解吸较优的工艺参数为:上样液pH值2.46,解吸液为95%乙醇,解吸液的流速为3mL/min,pH值11,4.5BV解吸液即可完全洗脱被树脂吸附的黄酮类物质,其解吸率高达98.00%.在试验研究范围内,树脂吸附金银花黄酮是自发性放热过程,并且符合Langmuir方程,此外树脂对黄酮的吸附动力学可用Pseudo-second-order模型较好地拟合,其表观吸附速率常数为Kso℃=3.43×10-2g/(mg·min).  相似文献   

13.
离子交换法从发酵液中提取L-亮氨酸   总被引:4,自引:0,他引:4  
用离子交换法提取发酵液中的L-亮氨酸,比较了不同型号的强酸性阳离子树脂对L-亮氨酸的静态吸附量和吸附动力学,其中以WA-2型树脂对L-亮氨酸吸附量最大、吸附速度快,适于L-亮氨酸的提取.测定了WA-2型树脂对L-亮氨酸的吸附等温线,并回归得到Freundlich方程.考察了固定床操作工艺条件,结果表明:发酵液经预处理后,以1BV/h流速上柱吸附,上柱量为2BV;再用0.3mol/L的氨水洗脱,速度为1BV/h,洗脱效果较好,L-亮氨酸回收率达到95.7%.提取过程中WA-2型树脂不会受到不可逆的污染,也没有机械损坏,其使用寿命不受影响.  相似文献   

14.
以湖南黑茶为原料,采用超声法提取湖南黑茶中茶多酚,后通过静态吸附和解吸实验,对5种大孔吸附树脂进行筛选,研究大孔吸附树脂对湖南黑茶茶多酚的吸附热力学和动力学。结果表明,大孔吸附树脂D-101对湖南黑茶茶多酚有较大的吸附量、较强的解吸能力。大孔吸附树脂D-101对黑茶茶多酚的吸附符合Freundlich等温吸附方程;且ΔH0、ΔG0、ΔS0,表明黑茶茶多酚在大孔吸附树脂D-101上的吸附属于可自发进行的物理吸附,吸附过程为放热、熵减过程。吸附动力学研究结果表明,准二级动力学方程的计算值与实验值吻合较好,适合描述大孔吸附树脂D-101对黑茶茶多酚的吸附过程。  相似文献   

15.
考察了HPD-826、HPD-417、ADS-17、HPD-722、HPD-450、AB-8、HPD-600、D-101,共8种大孔树脂对藏药白花龙胆花总黄酮的吸附和解吸性能,通过静态吸附量和解吸附率及静态吸附曲线的绘制,筛选出AB-8树脂的效果最佳;以AB-8树脂为目标,进行了动态吸附实验,考察了上柱液浓度、pH值、上柱液流速、乙醇浓度、解吸剂流速、解吸体积等对AB-8树脂吸附和解吸效果的影响,确定出AB-8树脂动态吸附白花龙胆花总黄酮的最佳条件:上柱液浓度为6.5mg/mL,pH为3.79,上柱流速4BV/h;最佳洗脱条件:用50%乙醇进行洗脱,解吸流速为3BV/h,解吸体积4BV。在此条件下,白花龙胆花总黄酮纯度由原来的22.10%,变为65.75%,产品精制倍数为65.75%/22.10%=2.97,表明AB-8树脂可用于白花龙胆花总黄酮的分离纯化。  相似文献   

16.
研究大孔吸附树脂对西藏雪莲总黄酮的静态吸附动力学和热力学特性。静态吸附、解吸实验结果表明,在所选8种大孔吸附树脂中,XDA-8树脂对西藏雪莲总黄酮的吸附率和解吸率均最高。静态吸附动力学实验结果表明,303K、313K、323K时,XDA-8树脂对西藏雪莲总黄酮的吸附过程符合二级动力学方程,拟合值与实验值较接近,粒内扩散与膜扩散均影响吸附。热力学实验结果表明,XDA-8树脂对西藏雪莲总黄酮的吸附符合Freundlich模型,热力学参数ΔH0、ΔG0、ΔS0,由此可知,西藏雪莲总黄酮在XDA-8树脂上的吸附过程为吸热、熵增过程,可以自发进行,升高温度有利于吸附的进行。  相似文献   

17.
采用氢氟酸法制备氢氧化钽,并研究了其对PO43-的吸附性能。结果表明,氢氧化钽对磷酸盐的吸附速率较快,30min内即可达到吸附平衡,吸附过程符合准二级动力学方程。等温吸附实验结果表明,Langmuir模型能更好地描述氢氧化钽对磷酸盐的吸附行为,最大吸附容量为94.7mg PO43-/g。解吸实验中,以氨水为解吸剂,最大解吸率为68.0%。  相似文献   

18.
通过研究4种不同金属配基的金属螯合亲和层析介质对妥布霉素的吸附和解吸性能,筛选出D401-Cu(Ⅱ)的分离纯化效果最好。通过静态吸附实验确定了最佳pH值为9.8,吸附动力学采用准二级动力学方程拟合较好,吸附等温线符合Langmuir吸附等温方程。通过动态吸附实验,确定最佳吸附条件:D401-Cu(Ⅱ)与D401的最佳配比为1:1,上样浓度为5.76mg/mL,上样流速为4BV/h;最佳洗脱条件为:分别使用浓度为0.3%和0.7%的氨水溶液进行梯度洗脱,洗脱剂用量均为6BV。采用优化后的工艺,妥布霉素纯度从32.85%提高到92.18%,回收率为97.46%,结果表明,D401-Cu(Ⅱ)能够用于妥布霉素的分离纯化。  相似文献   

19.
采用耐盐吸附树脂NDA-66预处理增塑剂DIBP生产废水,研究了不同吸附剂对DIBP生产废水中主要污染物邻苯二甲酸的吸附脱附效果。实验结果表明,5种吸附剂中,NDA-66树脂对邻苯二甲酸处理效果最好,且符合Freundlich方程和Langmuir方程;动态吸附脱附过程中,单柱吸附量为7BV,最佳流速为1.5BV/h,最佳脱附剂为1BV 8%Na OH+2BV蒸馏水,温度为328K,脱附率能达到99%以上;放大实验过程中,NDA-66耐盐吸附树脂对增塑剂DIBP生产废水中邻苯二甲酸吸附稳定性较好。  相似文献   

20.
大孔吸附树脂分离提取多杀菌素   总被引:2,自引:0,他引:2  
采用大孔吸附树脂法分离提取多杀菌素.从11种大孔吸附树脂中筛选出DM11进行了静态、动态吸附性能实验,并考察了不同吸附、解吸条件的影响.结果表明,DM11的静态吸附容量为25.63mg/g(wet resin),其吸附等温线符合Langmuir吸附等温式.采用丙酮做洗脱剂,洗脱率为97.5%,动态吸附最佳吸附pH为9.5,吸附流速为6BV/h,穿透吸附容量为21.2mg/ml(wet resin),洗脱流速1.5BV/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号