首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现 Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高 Pt的利用率以降低成本,是担载型 Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂 Pt的优良载体.
  在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载 Pt的能力,并评价所构建的负载型催化剂 Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成 Pt纳米粒子负载于 hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Val-can XC-72)作为载体的情况.经热重(TG)和 X射线光电子能谱(XPS)分析,三种催化剂 Pt/hNCNC、Pt/hCNC和 Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, Pt/hNCNC的 Pt分散状态优于 Pt/hCNC,更远优于 Pt/XC-72. Pt/hNCNC的平均 Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于 Pt颗粒的成核,也有利于固定 Pt颗粒.
  由于 hNCNC对 Pt的优异分散能力, Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明, Pt/hNCNC的电化学活性面积高于 Pt/hCNC和 Pt/XC-72,这与显微观察和 X射线衍射(XRD)结果相吻合. Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于 Pt/hCNC和 Pt/XC-72,电流衰减亦慢于 Pt/hCNC和 Pt/XC-72. hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度. hNCNC的氮掺杂有利于 Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察 hNCNC对 Pt的负载能力,本文还考察了高负载量 Pt/hNCNC的性能.在负载量高达60 wt%时, Pt/hNCNC中的 Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高 DMFC的输出电流密度.
  综上可见, hNCNC可以有效分散并稳定 Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了 hNCNC高分散 Pt颗粒用作 DMFC的高效阳极催化剂的重要前景,也表明 hNCNC有望成为应用广泛的新型载体.  相似文献   

2.
利用氮掺杂碳纳米笼(hNCNC)的高比表面积及掺杂氮原子的锚定作用,方便地将约3 nm的Pt-Ru合金纳米粒子均匀地负载在hNCNC表面,制得了Pt和Ru比例可调的Pt-Ru/hNCNC双金属合金催化剂.这些催化剂展现出优异的甲醇催化氧化活性和稳定性,且具有良好的抗CO中毒能力,显著优于Pt/hNCNC和商业PtRu/C等对照组催化剂.其优异的电化学性能可归因于以下因素的协同作用:(1) Pt-Ru合金的双功能机制增强了催化剂的CO氧化脱附能力从而使活性位重新暴露,(2) hNCNC的氮掺杂及高比表面积有利于获得粒径小且均匀的合金纳米粒子,(3) hNCNC的多尺度分级孔结构有利于甲醇等参与反应物质的传输.  相似文献   

3.
共轭羰基化合物的羰基选择性加氢反应被广泛用于制备重要的药物和化学中间体.利用氮掺杂碳纳米笼(hNCNC)大的比表面积和掺杂氮原子的锚定作用,构建了10 wt% Ru负载量的Ru/hNCNC催化剂,尺寸约2.4 nm的Ru纳米颗粒高度均匀地分散在hNCNC表面.用于催化苯乙酮选择性加氢制1-苯乙醇,在50.0℃、2.0 MPa H2的温和条件下,展现出优异的催化加氢性能:反应2.0 h后的苯乙酮转化率和1-苯乙醇选择性分别达到96.2%和95.8%,远优于未掺杂碳纳米笼(hCNC)和活性炭负载的Ru催化剂;循环使用6次后,其苯乙酮转化率仅略有下降(从96.2%到94.0%),明显优于Ru/hCNC.Ru/hNCNC的优异催化性能可归因于:hNCNC大的比表面积和掺杂氮原子的锚定作用有利于Ru纳米粒子的分散和固载、独特的微孔-介孔-大孔共存的分级孔结构有利于传质、掺杂氮原子有效调变了Ru催化剂的电子结构.  相似文献   

4.
陈卫祥  赵杰  LEE Jim-Yang  刘昭林 《化学学报》2004,62(17):1590-1594
利用微波辐射加热技术快速合成了XC-72碳和碳纳米管(CNTs)负载的PtRu合金纳米粒子,合金负载的质量分数为20%,Pt和Ru的原子比接近于1:1.透射电镜观察表明微波合成的PtRu合金纳米粒子具有细小的粒径和狭窄的尺寸分布,所合成的PtRu合金纳米粒子高度分散在XC-72碳和CNTs的表面,其平均粒径分别为3.3 nm和2.8 nm.电化学实验表明微波合成的PtRu/XC-72和PtRu/CNTs纳米催化剂比用湿化学方法以KBH4还原制备的催化剂对甲醇的电化学氧化具有更高的催化活性.  相似文献   

5.
曾亚平  隋升 《电化学》2011,17(4):393-398
以碳纳米粉(XC-72R)作为载体,采用三种不同方法合成Pt/C负载型催化剂。利用X射线衍射(XRD)、透射电镜(TEM)、循环伏安法(CV)、恒电位测试(Potentiostatic)以及线性极化分析(Potentiodynamic polarization)等手段进行催化剂表征,结果表明,微乳法制得的负载型催化剂,活性组分的颗粒尺寸为5~10nm,且均匀地分散在载体表面,其电化学性能良好。而微乳法进一步制备的含不同比例的负载型的PtIr/C催化剂,其中以Pt85Ir15表现出更为较好的电化学综合性能。  相似文献   

6.
钟静萍  黄科薪  许文涛  唐华果  Muhammad Waqas  樊友军  王睿翔  陈卫  王沂轩 《催化学报》2021,42(7):1205-1215,中插71-中插75
有效调控碳纳米材料的几何和电子结构的协同效应和缺陷是获得优良电化学性能的关键.然而,如何设计一种具有优势结构的杂化材料及对其电催化机理的认识尚不清楚.本文提出了一种聚(3,4-乙撑二氧噻吩)/聚苯胺导电共聚物热解策略来制备S和N共掺杂多壁碳纳米管(MWCNTs),发现改变前驱体溶液中两种单体的比例可以调控掺杂MWCNTs中S和N原子的含量与表面活性位结构.S和N的共掺杂明显增大了碳纳米管表面的缺陷程度并暴露出更丰富的活性位点,从而有利于超细Pt和PtCu纳米颗粒的均匀分布和沉积.透射电镜和扫描透射电镜结果表明,所制备S和N共掺杂MWCNTs(SN-MWCNTs)负载的催化剂中Pt和PtCu纳米颗粒以及掺杂的S和N原子都均匀地分布在MWCNTs上,且沉积的Pt和PtCu纳米颗粒的平均尺寸仅分别为2.30和2.87 nm.X射线光电子能谱结果表明,S和N共掺杂MWCNTs与负载的Pt基纳米颗粒之间存在强烈的电荷转移相互作用,明显改变了贵金属Pt的表面电子结构.电化学测试结果表明,与Pt/SN-MWCNTs,Pt/N-MWCNTs,Pt/S-MWCNTs和商业Pt/C催化剂相比,Pt1Cu2/SN-MWCNTs表现出更大的电化学活性表面积(148.85 m2 g?1),更高的甲醇氧化质量活性(1589.9 mA mgPt?1)、电化学稳定性和抗CO毒化能力.密度泛函理论研究表明,S和N共掺杂导致碳纳米管极大地变形,同时极化和激活了相邻的C原子.因此,增强了Pt1Cu2纳米颗粒在SN-MWCNTs上的吸附以及随后甲醇分子的吸附.此外,Pt1Cu2/SN-MWCNTs对甲醇氧化的电催化活性均在热力学和动力学上优于相应的CNTs和N-CNTs基材料.本文提供了一种新颖的在碳基材料上构建高度分散且稳定的Pt基纳米颗粒高性能燃料电池电催化剂的方法.  相似文献   

7.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m~2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPaH_2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO_2,Pt/TiO_2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO_2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO_2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

8.
在本工作中,通过在氮气保护下热解Pt纳米颗粒结合的ZIF-67制备了由ZIF-67原位产生的氮掺杂碳负载Pt Co合金纳米颗粒组成的Pt Co-NC复合催化剂。通过X射线衍射,扫描电子显微镜,透射电子显微镜等物理表征手段研究了催化剂的结构和形貌,并测试了该催化剂对醇类燃料甲醇和乙醇氧化的电化学性能。与参比样Pt/C相比,Pt Co-NC催化剂的电催化活性与稳定性均得到了极大的提高,其优异的催化性能可以归因于抗一氧化碳中毒能力的提升和原位形成的Pt Co纳米颗粒和氮掺杂载体间的协同作用。  相似文献   

9.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

10.
石墨纳米纤维用作质子交换膜燃料电池催化剂载体   总被引:2,自引:0,他引:2  
利用质子交换膜燃料电池用过的废旧碳纸,采用球磨法制备了石墨纳米纤维(GNF,BET比表面积为229·3m2/g),并以GNF作为载体制备了Pt/GNF催化剂(电化学比表面积为98m2/g).与传统的以VulcanXC-72碳黑为载体的Pt/XC-72催化剂相比,其电化学比表面积及Pt粒径大小相近.采用恒电位氧化法考察了GNF,XC-72,Pt/GNF和Pt/XC-72的电化学稳定性.结果表明,在相同条件下,XC-72的峰电流增加了60%,而GNF增加了2%;Pt/XC-72的腐蚀电流比Pt/GNF的大40%;恒电位氧化60h后,Pt/XC-72约有84·7%的电化学比表面积损失,Pt/GNF仅损失37·2%.这表明GNF的抗腐蚀性优于XC-72,有希望成为质子交换膜燃料电池抗腐蚀的催化剂载体.  相似文献   

11.
 以多聚甲醛为还原剂,采用液相还原法制备了Pt/CMK-3直接甲醇燃料电池(DMFC)阳极催化剂,并采用透射电镜和X射线衍射技术对其进行了表征. 结果表明,有序介孔碳CMK-3具有规整的二维有序孔道结构,为DMFC中电子和燃料的传输提供了方便的路径,同时它较大的比表面积使得Pt纳米粒子很好地分散在其表面; Pt/CMK-3催化剂中Pt粒子的平均粒径为2.8 nm, 小于E-TEK公司的商品化Pt/XC-72和以甲醇为还原剂制备的Pt/C-M催化剂,并且粒径分布范围窄,结晶度低. 察了Pt/CMK-3催化剂对甲醇的电催化氧化性能,发现Pt/CMK-3催化剂对甲醇氧化的电催化性能优于Pt/XC-72和Pt/C-M催化剂.  相似文献   

12.
碳纳米管 (CNT)作为制备新型催化剂载体已有广泛的研究 [1~ 8] ,例如 ,在其表面负载 Pt,Ru和Pt Ru后则具有良好的催化性能[1,2 ,6~ 8] .但在 CNT表面负载金属微粒的方法难以获得尺寸和形状均匀的纳米粒子 .因此 ,如何制备超细和均匀的纳米粒子是一项具有重要的学术意义和技术价值的工作 .我们利用微波加热的多元醇工艺合成了 XC-72碳负载铂纳米粒子的催化剂 ,并发现它对甲醇的氧化具有较高的电催化活性 [9] .本文进一步以 CNT作为载体 ,利用微波加热法快速合成了 Pt/ CNT纳米催化剂 ,并对其对甲醇电化学氧化的性能进行了初步研究 …  相似文献   

13.
杨慧敏  张佰艳  张斌  高哲  覃勇 《催化学报》2018,39(6):1038-1043
甲醇燃料电池作为一种清洁、高效的能源转化形式广受关注. 贵金属 Pt 是甲醇燃料电池阳极催化剂不可缺少的活性组分, 但 Pt 价格昂贵, 易与 CO 等中间体强相互作用而中毒失活, 从而限制了甲醇燃料电池的广泛应用. 因此, 如何提高Pt 的利用率成为一个关键问题. 研究表明, 在碳材料载体中掺杂氮元素, 改变了载体本身的表面结构和电子性质, 有利于Pt 颗粒的成核和生长, 可获得尺寸小、分布均匀的 Pt 纳米颗粒, 能显著提升催化反应活性和 Pt 利用率. 然而, 传统的氮掺杂方法需要在高温、高压及氨气条件下进行, 增加了催化剂制备难度和成本.原子层沉积技术是逐层超薄沉积技术, 能够在原子级别精确控制膜的厚度, 既可制备尺度均一、高度可控的纳米粒子,也能实现材料表面的可控超薄修饰. 本课题组利用原子层沉积技术优势, 首先在碳纳米管表面沉积了直径 2 nm 左右的 Pt纳米颗粒, 然后在 Pt 纳米颗粒外表面超薄修饰聚酰亚胺膜, 通过后处理得到多孔掺氮碳膜修饰的 Pt/CNTs 催化剂. 碳膜的厚度可简单通过调控聚酰亚胺膜的沉积厚度来控制. 结果表明, 适当厚度的碳膜修饰 Pt/CNTs 催化剂可显著提升其甲醇电氧化性能, 电流密度可达商业 20% Pt/C 的 2.7 倍, 催化剂稳定性也显著改善. 然而碳膜修饰过厚会导致催化剂活性降低.通过计算催化剂电化学活性表面积发现, 超薄修饰碳膜后催化剂活性表面积有所降低, 这是由于碳膜的覆盖导致表面 Pt原子数减少. 修饰前后催化剂颗粒尺度变化不大, 推测催化剂活性的提高与形成了有利于催化反应的 Pt-碳膜界面有关.然而, 当碳膜修饰层过厚时, 会导致反应物分子难以扩散到 Pt 颗粒表面, 使催化剂活性降低. 预吸附单层 CO 溶出实验结果表明, 多孔掺氮碳膜超薄修饰 Pt/CNTs 催化剂后, CO 氧化峰的起始电位和峰值电位都向低电位处偏移, 这表明 Pt 表面吸附的 CO 在较低电位下即可被氧化, CO 更容易从 Pt 表面移除, 从而提高了催化剂的抗 CO 毒化能力. X 射线光电子能谱实验结果进一步表明, 经多孔掺氮碳膜修饰后, Pt 的 4f 电子向高结合能处偏移, 表明 Pt 原子周围的电子密度减小, 从而弱化了 Pt 对 CO 吸附的σ-π键反馈作用, 即减弱了 Pt 原子对 CO 的吸附, 这是导致掺氮碳膜修饰后催化剂活性及稳定性都大幅提高的原因.  相似文献   

14.
分别以商用碳黑XC-72、介孔碳CMK-5和含多层次孔的碳气凝胶HCA为载体, 微波法负载Pt纳米粒子, 在硫酸和甲醇溶液中进行循环伏安测试, 考察碳材料中多层次孔对其电催化活性的影响. 结果显示, Pt/HCA电极表现出较高的峰电流(7.5 mA·cm-2)和电化学活性面积(128.0 m2·g-1). 这可能是因为碳气凝胶具有连续但非周期性的介孔结构, 有利于Pt纳米粒子的分散以及反应物质的传质.  相似文献   

15.
甲醇燃料电池作为一种清洁、高效的能源转化形式广受关注.贵金属Pt是甲醇燃料电池阳极催化剂不可缺少的活性组分,但Pt价格昂贵,易与CO等中间体强相互作用而中毒失活,从而限制了甲醇燃料电池的广泛应用.因此,如何提高Pt的利用率成为一个关键问题.研究表明,在碳材料载体中掺杂氮元素,改变了载体本身的表面结构和电子性质,有利于Pt颗粒的成核和生长,可获得尺寸小、分布均匀的Pt纳米颗粒,能显著提升催化反应活性和Pt利用率.然而,传统的氮掺杂方法需要在高温、高压及氨气条件下进行,增加了催化剂制备难度和成本.原子层沉积技术是逐层超薄沉积技术,能够在原子级别精确控制膜的厚度,既可制备尺度均一、高度可控的纳米粒子,也能实现材料表面的可控超薄修饰.本课题组利用原子层沉积技术优势,首先在碳纳米管表面沉积了直径2 nm左右的Pt纳米颗粒,然后在Pt纳米颗粒外表面超薄修饰聚酰亚胺膜,通过后处理得到多孔掺氮碳膜修饰的Pt/CNTs催化剂.碳膜的厚度可简单通过调控聚酰亚胺膜的沉积厚度来控制.结果表明,适当厚度的碳膜修饰Pt/CNTs催化剂可显著提升其甲醇电氧化性能,电流密度可达商业20%Pt/C的2.7倍,催化剂稳定性也显著改善.然而碳膜修饰过厚会导致催化剂活性降低.通过计算催化剂电化学活性表面积发现,超薄修饰碳膜后催化剂活性表面积有所降低,这是由于碳膜的覆盖导致表面Pt原子数减少.修饰前后催化剂颗粒尺度变化不大,推测催化剂活性的提高与形成了有利于催化反应的Pt-碳膜界面有关.然而,当碳膜修饰层过厚时,会导致反应物分子难以扩散到Pt颗粒表面,使催化剂活性降低.预吸附单层CO溶出实验结果表明,多孔掺氮碳膜超薄修饰Pt/CNTs催化剂后,CO氧化峰的起始电位和峰值电位都向低电位处偏移,这表明Pt表面吸附的CO在较低电位下即可被氧化,CO更容易从Pt表面移除,从而提高了催化剂的抗CO毒化能力.X射线光电子能谱实验结果进一步表明,经多孔掺氮碳膜修饰后,Pt的4f电子向高结合能处偏移,表明Pt原子周围的电子密度减小,从而弱化了Pt对CO吸附的σ-π键反馈作用,即减弱了Pt原子对CO的吸附,这是导致掺氮碳膜修饰后催化剂活性及稳定性都大幅提高的原因.  相似文献   

16.
以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即3 nm时活性差,3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。  相似文献   

17.
费托合成可以将来源广泛的合成气转化为低碳烯烃和燃油等高附加值化学品, 是后石油时代的重要化工过程, 而发展高性能的催化剂是该工程产业化的关键. 以具有高比表面积和高氮含量的氮掺杂碳纳米笼(NCNC)为载体, 采用等体积浸渍法制备了Ru的质量分数为20%的Ru/NCNC催化剂, 所得Ru纳米颗粒均匀分散, 相比于未掺杂碳纳米笼负载的Ru催化剂(Ru/CNC), Ru纳米粒子尺寸更小且分布更集中. Ru/NCNC催化剂展现出优异的费托合成催化性能, 在0.5 MPa和220 ℃的温和条件下, 具有高的催化活性、高的C5+选择性(55.7%)、低的CH4选择性(13.5%)和高的催化稳定性(60 h, CO转化率保持在≈33%), 显著优于Ru/CNC. 这可归因于N掺杂提高了Ru活性中心的数量和电子态密度以及表面碱性, 增强了金属-载体相互作用, 进而提高Ru/NCNC的催化活性、长链产物(C5+)选择性、抗烧结能力和催化稳定性. 本研究提供了一条通过掺杂碳载体设计提升费托合成催化剂性能的有效策略.  相似文献   

18.
李恒  孔令斌  张晶  王儒涛  罗永春  康龙 《应用化学》2010,27(9):1065-1070
采用直接电化学还原法在介孔碳(CMK-3)载体上直接电沉积高分散的铂纳米颗粒,制备CMK-3复合铂纳米颗粒电极(Pt/CMK-3)。 通过透射电子显微镜分析发现,铂纳米颗粒非常均匀的分布在CMK-3上,平均粒径约5 nm。 通过循环伏安测试,分析了催化剂不同负载铂含量时氯铂酸的利用率,在理论铂质量分数为20%时,这种方法制备的Pt/CMK-3所使用的氯铂酸的利用率最高,在1 mol/L CH3OH+0.5 mol/L H2SO4溶液中循环伏安测试电流密度达到382 A/g。 在相同实验条件下,Pt/CMK-3电极对甲醇电催化活性远高于Pt/XC-72(炭黑)电极和用常规电沉积方法制备的Pt/CMK-3电极。  相似文献   

19.
王丽  马俊红 《物理化学学报》2001,30(7):1267-1273
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt 制备了Pt/N-RGO纳米结构电催化剂. 采用透射电镜(TEM)、X射线光电子能谱(XPS)、X 射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能. 结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt 颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

20.
采用高温热解聚苯胺修饰的氧化石墨烯(PANI-GO),得到了氮掺杂的还原氧化石墨烯碳材料(N-RGO),以其负载Pt制备了Pt/N-RGO纳米结构电催化剂.采用透射电镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)谱及拉曼光谱等技术对N-RGO和Pt/N-RGO的形貌及结构进行了表征,用循环伏安、计时电流等电化学技术研究了Pt/N-RGO电极催化剂对CO溶出反应和甲醇电氧化反应的催化性能.结果表明:高温热解PANIGO可同时实现GO的还原及其氮掺杂的过程,氮掺杂引起还原氧化石墨烯碳材料表面缺陷结构和导电性的增加;与相应的未掺杂氮样品Pt/RGO相比较,Pt/N-RGO样品上Pt颗粒的分散更均匀,显示出更强的抗CO毒化能力和更高的甲醇电氧化催化活性及稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号