首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正成都中科凯特科技有限公司(中国科学院成都有机化学有限公司控股公司)作为渗透气化透水膜性能测试方法国家标准(GB/T 34243-2017)制定单位,集分子筛渗透气化膜研发、生产、经营和服务为一体,致力于为客户提供溶剂脱水纯化整体解决方案。在分子筛膜制备、膜装备等方面拥有多项核心技术,已在多个领域实现分子筛膜渗透气化工业应用。  相似文献   

2.
采用化学气相沉积(CVD)法对MFI分子筛膜进行Sn掺杂, 制备了一种Sn-MFI分子筛膜, 并研究了其渗透汽化分离乙醇/水体系的性能. XRD, 29Si NMR, UV-Vis及分离实验结果表明, 采用CVD法在将Sn引入MFI膜时, 膜层结构基本得到保持, Sn可以进入分子筛骨架, 有效地减少了膜表面的硅羟基缺陷, 提高了膜分离乙醇/水体系时的稳定性. 在SnCl4用量为3 mL、 修饰时间为1 h时, 所得到的Sn-MFI分子筛膜的渗透汽化分离性能最佳, 并可在60 ℃下分离5%(质量分数)乙醇/水混合物时保持良好的稳定性. 在经过连续50 h渗透气化分离后, 其渗透通量仅从1.52 kg·m-2·h-1下降至1.38 kg·m-2·h-1, 分离因子从18下降至16.  相似文献   

3.
A型分子筛膜的研究进展*   总被引:8,自引:0,他引:8  
本文简述了分子筛膜的发展概况, 总结了A 型分子筛膜的制备方法、制备过程中各种因素对成膜的影响、A 型分子筛膜的形成机制, 并对评价分子筛膜的手段(XRD、SEM、气体渗透) 和A 型分子筛膜的应用(渗透汽化、膜催化) 进行了分析。  相似文献   

4.
通过二次生长法在α-Al2O3支撑体表面合成了PHI分子筛膜,考察了晶种合成方式、二次生长合成温度及时间对形成PHI分子筛膜的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)对合成膜进行表征.结果表明:载体表面合成出了PHI分子筛;二次生长法合成出的PHI分子筛膜连续、致密,膜厚约为20 μm.利用渗透汽化技术对甲醇、乙醇、异丙醇和叔丁醇等不同分子尺寸的醇/水体系进行分离性能的研究,同时考察原料液中水含量对所制备的PHI分子筛膜的分离性能的影响.结果表明:PHI分子筛膜对几种醇水体系都具有良好的分离效果,随着水含量的增加,水的渗透通量呈增大趋势,乙醇和甲醇的理想分离因子有所降低,异丙醇和叔丁醇的理想分离因子增大.  相似文献   

5.
 本文首次利用自制的多孔二氧化硅载体, 通过二次原位水热合成出具有较高分离性能的Silicalite-1分子筛膜, 对其进行了SEM表征, 并利用渗透气化装置对乙醇-水的分离能力进行了评价, 同时还研究了乙醇-水原料液温度对Silicalite-1分子筛膜分离性能的影响.  相似文献   

6.
采用液相共混的方法制备了ZSM-5分子筛填充壳聚糖膜.扫描电镜表征表明分子筛在膜中分散均匀,膜表面没有明显缺陷.考察了填充膜在碳酸二甲酯/甲醇混合液中的溶胀和吸附行为,探讨了填充膜中分子筛含量及操作温度对渗透汽化膜分离性能的影响.结果表明膜优先吸附甲醇,其分离性能主要由溶解过程控制;随着膜中分子筛含量的增加,膜的溶胀度增大,渗透通量大幅度提高;渗透通量与操作温度符合Arrhenius关系式.与壳聚糖均质膜相比,ZSM-5分子筛填充壳聚糖膜对甲醇和碳酸二甲酯混合物具有更好的分离效果.  相似文献   

7.
选取不锈钢金属网作为成膜载体, 采用预涂晶种的方法, 研究了L型分子筛晶种在水热条件下二次生长成膜的过程. 对成膜条件进行了详细的考察, 并讨论了反应液的碱度及反应时间对L型分子筛膜形成的影响. 利用扫描电子显微镜(SEM)对L型分子筛膜的形貌进行了表征. 通过优化反应条件, 得到了致密、 连续、 纯相、 均匀的L型分子筛膜, 厚度约为20 μm. 单组分气体渗透测试结果表明, 在室温和常压下, L型分子筛膜对N2气和H2气的渗透速率分别为8.39×10-8 和6.96×10-7 mol·m-2·s-1·Pa-1, 从而计算出膜对H2/N2混合气体的理想分离系数为8.3. 双组分气体渗透测试结果表明, 温度的升高会导致膜对H2气和N2气的渗透速率增加及H2/N2分离系数的减小.  相似文献   

8.
开发了一种在不锈钢网基底上快速制备连续致密Silicalite-1(Si-MFI)分子筛膜的新方法. 该制膜过程包括用含有聚氧乙烯(PEO)高分子的氧化硅溶液对不锈钢网基底进行预处理和在预处理后的基底上用二次生长法制备分子筛膜2个步骤. 通过该方法可在12 h内制备连续致密的不锈钢网支撑的Si-MFI分子筛膜. SEM分析结果表明, 所制备的Si-MFI分子筛膜连续且致密, 而XRD分析结果表明, 膜中的Si-MFI微晶具有高结晶度. 用膜渗透分离装置及气相色谱仪测试了Si-MFI膜的渗透性能及对CO2和N2的分离性能, 结果显示, 该Si-MFI膜具有很好的渗透性能, 并对CO2和N2具有很好的分离性能.  相似文献   

9.
利用膜反应器对比在不同的工况下反渗透膜和渗透气化膜脱水回收[Emim][OAc]离子液体的效果。结果表明,反渗透膜对于低浓度离子液体具有较高的截留效果,而随着离子液体浓度的增加,透过反渗透膜离子液体的浓度增加,脱水效果变差,并且渗透量也从原来浓度为2%(wt)的[Emim][OAc]的9kg/(m~2·h)降低到了8%(wt)时的1.69kg/(m~2·h)。渗透气化膜在温度为100℃、流速为10 mL/min条件下,内循环62小时,通量从最开始的0.434 kg/(m~2·h)到0.302 kg/(m~2·h),保持略微下降的趋势,而离子液体的浓度从初始的20%(wt)上升到50%(wt)。表明了利用渗透气化膜对于IL-H_2O脱水的可行性。对IL离子液体的脱水回收具有一定的指导意义。  相似文献   

10.
采用二次生长法在廉价的多孔莫来石管状支撑体上合成了含硼MFI(B-MFI)分子筛膜。通过XRD、FTIR、ICP-AES、11BMAS NMR和SEM对形成膜和粉末进行表征,并考察了溶胶nB/nSiO2比、料液温度和浓度对分子筛膜渗透汽化性能的影响。表征结果证实BO4存在于MFI晶体骨架中。溶胶nB/nSiO2比对膜层微结构和渗透汽化性能有较大影响。B-MFI型分子筛膜选择性地从水溶液中透过有机物,在60℃、质量分数5%丙酮/水和乙醇/水体系的分离因子分别为260和70,均高于同等条件下制备的silicalite-1分子筛膜。  相似文献   

11.
采用二次生长法在多孔α-Al2O3载体上制备MFI型(ZSM-5和silicate-1)分子筛膜;通过XRD和SEM检测,证明所合成的分子筛膜为致密、交联和无取向的MFI型分子筛膜,厚度为5 μm;单组分气体渗透实验检测中,所制备样品膜的N2渗透量均小于10-11 mol/(m2·s·Pa),可认为其无缺陷;同时,考察了样品分子筛膜对H2S/CH4混合气的分离效果,在渗透压分别为0.3和0.5 MPa时,silicate-1分子筛膜的H2S/CH4的分离因子分别为1.99和4.44,而ZSM-5分子筛膜的CH4/H2S的分离因子分别为6.71和12.85。  相似文献   

12.
聚乙烯醇辐照交联共聚物渗透气化分离膜   总被引:11,自引:1,他引:11  
研究了聚乙烯醇(PVA)与丙烯酰胺丙烯酸钠共聚物(PcoAANa)的辐照交联共聚物膜用于水-乙醇混合物的渗透气化分离,随着PcoAANa在共聚物中的含量由0%上升到35%,透量及分离系数同时增大,膜材料对混合物中水及乙醇的选择性溶解,对渗透气化过程起重大影响。求出了水、乙醇及其混合物的表现透过活化能.水,乙醇和混合物的平均扩散系数在水含量为40%时出现极大值。  相似文献   

13.
通过浸渍3-氨丙基甲基二乙氧基硅烷(ADMS)对α-Al2O3中空纤维载体进行有机功能化改性, 使载体表面带正电, 利用NaA分子筛晶种负电性与功能化载体之间的静电吸附机理进行预涂晶种, 采用微波加热-二次生长法于载体表面合成了NaA分子筛膜. 采用X射线衍射(XRD)、zeta 电位、扫描电子显微镜(SEM)等分析手段和气体渗透实验对NaA分子筛膜进行了表征. 考察了未改性NaA分子筛膜与改性NaA分子筛膜的形貌、结构和气体渗透性能差异. XRD结果表明载体表面只有NaA分子筛生成; zeta 电位分析表明NaA分子筛晶种及分子筛前驱体与有机功能化载体电位相反, 存在静电吸附作用; SEM结果显示改性NaA分子筛膜表面颗粒相互联结呈孪生态, 膜厚约5 μm, 膜层致密、均匀、平整; 在不同温度下对H2、O2、N2和C3H8进行气体渗透测试,35 °C条件下改性NaA分子筛膜对H2的渗透率仅为3.6×10-7 mol·m-2·s-1·Pa-1, 较未改性NaA分子筛膜的渗透率(4.0×10-7 mol·m-2·s-1·Pa-1)低, 而改性NaA分子筛膜的H2/C3H8理想分离系数则高达11.25, 远大于未改性NaA分子筛膜的H2/C3H8理想分离系数(5.06).  相似文献   

14.
在预涂自制微米晶种的多孔管状莫来石支撑体表面上,采用两步变温法诱导合成T型分子筛膜。在溶胶配比nSiO2∶nAl2O3∶nNa2O∶nK2O∶nH2O=1∶0.05∶0.3∶0.1∶30合成条件下,通过变温晶化过程成功制备出高性能的T型分子筛膜。XRD和SEM结果表明,该法可在支撑体表面上较快地形成一层连续致密的纯相T型分子筛膜层,较大缩短了膜合成时间和提高了膜致密性。在优化条件下所合成的膜具有优异的渗透汽化性能,且膜制备的重复性良好。75℃时,在水/异丙醇(10/90,w/w)混合物体系中膜的渗透通量和分离因子分别高达4.25 kg.m-2.h-1,7600;在水/乙醇(10/90,w/w)混合物体系中膜的渗透通量和分离因子分别为2.87 kg.m-2.h-1,1 900。  相似文献   

15.
清液体系中T型分子筛膜的高重复性合成与渗透汽化性能   总被引:1,自引:0,他引:1  
以自制微米级分子筛为晶种,在清液体系中成功合成出高性能的T型分子筛膜,考察了硅铝比、水硅比、碱度及合成温度与时间等条件对膜的生长和渗透汽化性能的影响.结果表明,在摩尔组成为1SiO2:0.015Al2O3:0.41(Na2O+K2O):30H2O的清液体系中,于423K晶化6h的条件下可较快地形成一层厚度为5μm的连续致密纯相T型分子筛膜,较大缩短了膜合成时间且提高了膜致密性.在优化条件下所合成的膜具有优良的分离性能和高重复性.348K时,在10wt%水-90wt%异丙醇混合物体系中膜的渗透通量和分离因子分别高达4.20kg/(m2·h)和7800.  相似文献   

16.
渗透气化法分离液体混合物   总被引:2,自引:1,他引:1  
渗透气化法是一种用来分离液体混合物的膜分离方法。本综述简要地讨论了渗透气化法的机理。本法用于乙醇-水混合物的分离,对于从生物源生产乙醇具有重要意义。乙醇-水混合物的分离膜可以分成二类:亲水性膜和亲乙醇膜。使用若干物理方法可改进渗透气化过程。最后,作者认为渗透气化膜的发展趋势是从均质膜,不对称膜向复合膜过渡。  相似文献   

17.
采用多种表征技术详细研究了碱金属阳离子对丝光沸石分子筛膜生长和渗透汽化性能的影响。结果表明,Li~+、Na~+、K~+和Cs~+以及Na~+-Li~+、Na~+-K~+和Na~+-Cs~+的不同离子组合对丝光沸石分子筛膜的形貌和性能有很大影响。研究发现,碱金属阳离子通过促进硅在初始凝胶中的溶解,在硅铝酸盐的重排过程中起到结构导向作用,进而起到构筑丝光沸石晶体骨架结构的作用。Na~+对丝光沸石晶体的结晶有明显的促进作用,而Li~+、K~+和Cs~+在相同的结晶时间内表现出较慢的结晶速率。在合成凝胶中用K~+代替少量Na~+可以显著改善膜表面的亲水性。特别是合成凝胶中Na~+/K~+比(n_(Na~+)/n_(K~+))为2时,形成了更致密、更亲水的丝光沸石分子筛膜,显示出更高的渗透汽化性能。对于90℃下HAc质量分数为90%的HAc/H_2O混合物的分离,该膜显示出2.67 kg·m~(-2)·h~(-1)的高渗透通量和约为4 000的分离因子。此外,最优条件下合成的丝光沸石分子筛膜在90℃下长达240 h渗透汽化分离90%的HAc/H_2O混合物依然显示优越的酸稳定性。  相似文献   

18.
气体分离分子筛膜   总被引:4,自引:0,他引:4  
本文简述了气体分离分子筛膜的研究进展,总结了气体分离分子筛膜的制备方法、分子筛膜类型、气体分离性能及催化应用,分析了气体渗透测定方法和分离机理,对分子筛膜的发展提出一些建议。  相似文献   

19.
MFI型分子筛膜的制备与表征   总被引:1,自引:0,他引:1  
用原位水热合成法在α-Hl2O3陶瓷管上合成出MFI型分子筛膜,采用超声清洗的方法表征了分子筛晶体的附着强度,并用XRD和SEM等手段对分子筛膜进行了表征,渗透数据表明,气体透过膜时不遵从努森扩散是;此分子筛膜具有分子筛分作用,基本无缺陷。  相似文献   

20.
制备了高性能的AlPO4-14分子筛膜. 首先通过控制反应溶胶中水和模板剂的含量制备了形貌均一的AlPO4-14分子筛, 分子筛的尺寸为15~18 mm; 然后采用晶种法即在反应凝胶中加入分子筛作为晶种进一步调控分子筛的大小, 使得AlPO4-14分子筛的尺寸从15~18 mm减小到2~3 mm, 得到形貌均一的纯相片状晶体, 同时有效缩短了制备时间; 最后以多孔管状莫来石为支撑体, 采用二次生长法制备AlPO4-14分子筛膜. 考察了2种不同大小的晶种对膜形貌和性能的影响, 发现以大尺寸的分子筛(15~18 mm)作为晶种制备的分子筛膜的分离层存在较多缺陷, 而采用小尺寸的晶种(2~3 mm)制备的膜层较均一致密. AlPO4-14分子筛膜经高温脱除模板剂后仍然保持着纯相的AlPO4-14晶型, 表明二次生长法促进了AlPO4-14晶体在膜层中的生长且使其具有更高的结晶度和热稳定性. 在25 ℃, 100 kPa下, AlPO4-14分子筛膜对H2/CH4, CO2/CH4和H2/CF4的理想分离因子分别为28, 40和1047, 且H2和CO2的渗透速率分别为6.3×10 -7和9×10 -7 mol·(m 2·s·Pa) -1; 对等摩尔CO2/CH4混合气体的分离因子为81.5, 且CO2的渗透速率为8.8×10 -7 mol·(m 2·s·Pa) -1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号