首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
<正>Mesoporous carbon(MC) with surface area of 380 m~2/g was prepared and employed as the carbon support of Pt catalyst for counter electrode of dye-sensitized solar cells.Pt/MC samples containing 1 wt%Pt were prepared by reducing chloroplatinic acid on MC using wet impregnation.It was found that Pt nanoparticles were uniform in size and highly dispersed on MC supports.The average size of Pt nanoparticles is about 3.4 nm.Pt/MC electrodes were fabricated by coating Pt/MC samples on fluorine-doped tin oxide glass.The overall conversion efficiency of dye-sensitized solar cells with Pt/MC counter electrode is 6.62%,which is higher than that of the cells with conventional Pt counter electrode in the same conditions.  相似文献   

2.
PbS electrode with high catalytic activity to Sn 2? reduction certificated by the measurements of electrochemical impedance spectroscopy and cyclic voltammetry was prepared by a simple method. The high catalytic activity makes it be a low-cost alternative counter electrode to platinum (Pt) to be used in quantum dots-sensitized solar cells (QDSSCs) based on polysulfide electrolyte. The photovoltaic performance enhancement of the quantum dots (QDs)-sensitized semiconductor thin films due to the PbS counter electrode was evaluated by fabricating QDSSCs based on CdSe QDs-sensitized ZnO (SnO2) thin film. CdSe QDs-sensitized ZnO thin film has the lower internal total series resistance and electron transmission time, the higher electron lifetime and electron collection efficiency than the CdSe QDs-sensitized SnO2 thin film. Replacing the Pt counter electrode with the PbS counter electrode leads to more improvement on the short circuit photocurrent density for QDSSC based on the ZnO thin film than the SnO2 thin film. Therefore, the process to limit the photovoltaic performance of CdSe QDs-sensitized solar cell and the possible way to improve the photovoltaic performance were analyzed.  相似文献   

3.
Two‐dimensional (2D) semiconducting nanosheets have emerged as an important field of materials, owing to their unique properties and potential applications in areas ranging from electronics to catalysis. However, the controlled synthesis of ultrathin 2D nanosheets remains a great challenge, due to the lack of an intrinsic driving force for anisotropic growth. High‐quality ultrathin 2D FeSe2 nanosheets with average thickness below 7 nm have been synthesized on large scale by a facile solution method, and a formation mechanism has been proposed. Due to their favorable structural features, the as‐synthesized ultrathin FeSe2 nanosheets exhibit excellent electrocatalytic activity for the reduction of triiodide to iodide and low charge‐transfer resistance at the electrolyte–electrode interface in dye‐sensitized solar cells (DSSCs). The DSSCs with FeSe2 nanosheets as counter electrode material achieve a high power conversion efficiency of 7.53 % under a simulated solar illumination of 100 mW cm?2 (AM 1.5), which is comparable with that of Pt‐based devices (7.47 %).  相似文献   

4.
Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S4 solution. Relative to Pt counter electrode, the Cu2S counter electrode provides greater electrocatalytic activity and lower charge transfer resistance. The prepared Cu2S counter electrode represented nanoflower-like porous film which was composed of Cu2S nanosheets on FTO and had a higher surface area and lower sheet resistance than that of sulfided brass Cu2S counter electrode. An energy conversion efficiency of 3.62% was achieved using the metal chalcogenide complex-mediated fabricated Cu2S counter electrode for CdS/CdSe co-sensitized solar cells under 1 sun, AM 1.5 illumination.  相似文献   

5.
采用静电纺丝技术和水热法合成了负载于碳纳米纤维表面的碳包覆Ni3S4纳米颗粒(Ni3S4@C/CNFs),利用喷涂法制备膜厚分别为2、4、6、7、8、9、10μm的Ni3S4@C/CNFs对电极。应用到染料敏化太阳能电池(DSSCs)中,探究Ni3S4@C/CNFs对电极的膜厚对于DSSCs光伏性能的影响。最终得出当Ni3S4@C/CNFs对电极膜厚为9μm时,DSSCs可以获得最高的光电转换效率(PCE)8.45%,也证明了对电极存在一个最佳膜厚,使DSSCs获得最优的光伏性能。  相似文献   

6.
以阳极氧化法制得的TiO2薄膜光电极为工作电极,铂环为对电极,饱和甘汞电极为参比电极,组成光电催化降解苯酚体系.运用电化学阻抗图谱(EIS),测得光电催化过程中TiO2薄膜光电极的空间电荷层电容,计算出半导体能带结构参数——空间电荷层宽度W.结果证明:当空间电荷层宽度W随阳极偏压增加而增大时,TiO2薄膜电极光催化活性提高;当其等于薄膜厚度时,光催化活性最好,此时出现最佳偏压值;继续增加偏压,活性反而有所下降.  相似文献   

7.
采用电沉积-置换法在Ti片上制备了染料敏化太阳能电池(DSSC)的对电极Pt/Ti. 形貌表征结果显示, 与传统热解法制备的Pt/FTO对电极相比, Pt/Ti对电极Ti基底上Pt催化颗粒的粒径和分散性得到显著改善. 光电流-光电压特性曲线测试结果表明, 以Pt/Ti为对电极的DSSC与以Pt/FTO为对电极的DSSC相比, 光电转化效率提高了20.8%. 由于Pt颗粒分散性和粒径的改善所引起的Pt催化性能的提高、 Pt/Ti对电极更低的电阻以及Ti基底更好的反光性能是提升DSSC性能的原因.  相似文献   

8.
The use of single-walled carbon nanotubes (CNT) thin films to replace conventional fluorine-doped tin oxide (FTO) and both FTO and platinum (Pt) as the counter electrode in dye sensitized solar cells (DSSC) requires surface modification due to high sheet resistance and charge transfer resistance. In this paper, we report a simple, solution-based method of preparing FTO-free counter electrodes based on metal (Pt) or metal sulfide (Co(8.4)S(8), Ni(3)S(2)) nanoparticles/CNT composite films to improve device performance. Based on electrochemical studies, the relative catalytic activity of the composite films was Pt > Co(8.4)S(8) > Ni(3)S(2). We achieved a maximum efficiency of 3.76% for the device with an FTO-free counter electrode (Pt/CNT). The device with an FTO- and Pt-free (CoS/CNT) counter electrode gives 3.13% efficiency.  相似文献   

9.
利用磁控溅射方法在Si(001)基片上制备Ti/Pt底电极,其厚度大概分别为20、100 nm,其中Ti电极作为缓冲层,随后在上面溅射PZT铁电薄膜.研究了不同电极的制备工艺对电极形貌、取向以及对PZT铁电薄膜的制备带来的影响.结果表明,底电极的溅射温度以及退火温度对于底电极起着至关重要的作用,同时具有良好(111)取向的、致密性较好的底电极对于PZT铁电薄膜的生长具有重要的影响.  相似文献   

10.
本文研究了由硬脂酸香豆素制得的LB膜对n-Si/Ni电极性能的修饰作用.该LB膜沉积方式是Z型的,成膜之后吸收蓝移(由343nm移至325nm).在60mW·cm^-2溴钨灯光照下,n-Si/Ni/3LB/Fe(CN) /Pt电池的光电转换效率增大了一倍,稳定性亦有明显改善.交流阻抗测量表明,光照使n-Si/Ni/3LB电极的电解电阻大大减小,实验结果表明,硬脂酸香豆素LB膜对n-Si/Ni电极上的光致电荷传递过程的修饰作用是良好的.  相似文献   

11.
利用LB膜技术可控制备了纳米单层和多层的二氧化钛-有机钌螯合物杂化膜,并研究了上述无机-有机杂化膜修饰电极在Pt纳米团簇敏化后的光电流增强效应.实验结果表明:(1)纳米单层TiO2/[Ru(phen)2(dC18bpy)]2+(简称为TiO2-Ru)杂化膜的平均厚度为(3.6±0.5)nm;(2)在光照条件下TiO2-Ru杂化膜能有效催化还原[Pt(NH3)6]4+形成粒径位于20~160nm之间的Pt纳米团簇;(3)Pt纳米团簇的引入消除了金属钌螯合物中配体对电子传递的阻碍作用,改变了电子传递途径,从而有效减少了电子空穴对的复合,提高了Pt纳米团簇敏化的n层杂化膜修饰电极(ITO/(TiO2-Ru)n/Pt)在支持电解质中的光电流.与纳米单层TiO2-Ru杂化膜修饰的ITO电极(ITO/TiO2-Ru)相比,当工作电压为900mV时,ITO/TiO2-Ru/Pt在0.1mol·L-1的NaClO4电解质溶液中和光照(λ360nm)条件下,单位面积的光电流提高了约5倍;(4)ITO/(TiO2-Ru)n/Pt电极光电流的大小与杂化膜的层数密切相关,当TiO2-Ru杂化膜的层数从一层、二层增加到四层时,光电流呈现先升高后下降行为,这表明ITO/(TiO2-Ru)n/Pt电极的电子传递过程直接通过非电活性的二氧化钛纳米单层进行.  相似文献   

12.
The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation.  相似文献   

13.
针对粉体MOF衍生材料存在制备工艺复杂、薄膜厚度难以控制等问题,我们通过液相外延分步生长法制备了一种金属有机框架薄膜(PIZA-1),然后以其作牺牲模板,在惰性氛围中制备了一种CoSe_2和N共掺杂的碳膜(CoSe_2/N-CF),并用作DSSC对电极,其具有制备简单、粘结力强、厚度可调等优势。系统表征了CoSe_2/N-CF形貌特点、结构性质及电化学性能,并深入研究了不同厚度薄膜、CoSe_2颗粒大小对DSSC的光伏性能的影响。结果表明,CoSe_2/N-CF-15电极具有优异的催化活性,所组装的DSSC获得了8.68%的光电转化效率(PCE),高于相同条件下Pt电极组装电池的PCE(7.97%)。  相似文献   

14.
The electrooxidation of carbon monoxide and methanol on Pt-coated Au nanoparticles attached to 3-aminopropyl trimethoxysilane-modified indium tin oxide electrodes was examined as a function of Pt film thickness and Au particle coverage. For the electrodes with medium and high Au particle coverages, the CO stripping peak position shifts to more negative values with increasing Pt film thickness, from ca. 0.8 V (vs Ag/AgCl) at 1 ML to 0.45 V at 10 ML. Accompanying this peak potential shift is the sharpening of the peak width from more than 150 to 65 mV. For the electrode with low Au particle coverage, similar peak width narrowing was also observed, but the peak potential shift is much smaller, from 0.85 V at 1 ML of Pt to 0.65 V at 10 ML. These observations are compared with the CO oxidation on bulk Pt electrodes and on Pt films deposited on bulk Au electrodes. The film-thickness-dependent CO oxidation is explained by d band theory in terms of strain and ligand effects, the particle size effect, and the particle aggregation induced by Pt film growth. Corresponding to the increasing CO oxidation activity, the current density of methanol oxidation grows with the Pt film thickness. The peak potential and current density reach the same values as those obtained on a polycrystalline bulk Pt electrode when more than 4 ML of Pt is deposited on the Au particle electrodes with a particle coverage higher than 0.25. These results suggest that it is feasible to reduce Pt loading in methanol fuel cells by using Pt thin films as the anode catalyst.  相似文献   

15.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

16.
A nanometer-scale thin film of ruthenium supported on glassy carbon (nm-Ru/GC) was prepared by electrochemical deposition under cyclic voltammetric conditions. Scanning tunneling microscopy (STM) was used to investigate the structure and to measure the thickness of the thin film. It has been found that the Ru thin film is composed of layered Ru crystallites that appear in a hexagonal form with dimensions of about 250 nm and thickness around 30 nm. In situ FTIR spectroscopic studies demonstrated that such a nanostructured Ru thin film exhibits abnormal infrared effects (AIREs) for CO adsorption (G.Q. Lu et al., Langmuir 16 (2000) 778). In comparison with CO adsorbed on a massive Pt electrode, the IR absorption of COad on nm-Ru/GC was significantly enhanced. Moreover, the direction of COad bands is inverted and the full width at half maximum of COad bands is increased. It has been revealed that the enhancement factor of IR absorption of CO adsorbed on nm-Ru/GC electrodes depends strongly on the thickness of the Ru film. An asymmetrical volcano relationship between the enhancement factor and the thickness of the Ru film has been obtained. The maximum value of the enhancement factor was measured as 25.5 on a nm-Ru/GC electrode of Ru film thickness around 86 nm. The present study has contributed to exploration of the particular properties of nanostructured Ru film material and to the origin of the abnormal infrared effects.  相似文献   

17.
Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化   总被引:9,自引:0,他引:9  
以脉冲电流法制备的纳米纤维状聚苯胺(PANI)为Pt催化剂载体,用它制备了甲醇阳极氧化的催化电极Pt/(nano-fibular PANI).研究结果表明, Pt/(nano-fibular PANI)电极对甲醇氧化具有很好的电催化活性,并有协同催化作用.在相同的Pt载量条件下, Pt/(nano-fibular PANI)电极比Pt微粒修饰的颗粒状聚苯胺电极Pt/(granular PANI)具有更好的电催化活性.此外, Pt的电沉积修饰方法同样影响Pt/(nano-fibular PANI)电极对甲醇氧化的催化活性.脉冲电流法沉积Pt形成的复合电极较循环伏安法电沉积得到的Pt复合电极具有更优异的催化活性.  相似文献   

18.
A novel electrochemical sensor has been developed for the detection of carbon monoxide. The chemically modified electrode, prepared by reaction of cysteine and then an Au colloid of size approximately 15 nm with a platinum microelectrode, has excellent catalytic activity toward carbon monoxide, with an oxidation potential of +600 mV relative to the Ag/AgCl electrode. The CO gas sensor is based on an Au colloid self-assembled modified electrode as working electrode, an Ag/AgCl electrode as reference electrode, a Pt electrode as counter electrode, and a porous film which is in direct contact with the gas-containing atmosphere. The effects on the determination of CO of different internal electrolyte solutions of perchloric acid, hydrochloric acid, sulfuric acid, nitric acid, and phosphate buffer of different concentrations were also studied. The sensor is characterized by a short response time and highly reproducible detection of CO. This sensor can be used in the field of environmental monitoring and control.  相似文献   

19.
A novel electrochemical sensor has been developed for the detection of carbon monoxide. The chemically modified electrode, prepared by reaction of cysteine and then an Au colloid of size approximately 15 nm with a platinum microelectrode, has excellent catalytic activity toward carbon monoxide, with an oxidation potential of +600 mV relative to the Ag/AgCl electrode. The CO gas sensor is based on an Au colloid self-assembled modified electrode as working electrode, an Ag/AgCl electrode as reference electrode, a Pt electrode as counter electrode, and a porous film which is in direct contact with the gas-containing atmosphere. The effects on the determination of CO of different internal electrolyte solutions of perchloric acid, hydrochloric acid, sulfuric acid, nitric acid, and phosphate buffer of different concentrations were also studied. The sensor is characterized by a short response time and highly reproducible detection of CO. This sensor can be used in the field of environmental monitoring and control.  相似文献   

20.
采用溶胶-凝胶和电沉积法制备Ti基纳米TiO2-Pt(Ti/纳米TiO2-Pt)修饰电极. X射线衍射(XRD)表明纳米TiO2为锐钛矿型, 扫描电镜(SEM)显示Pt纳米粒子在纳米TiO2多孔膜的表面呈现簇分散状态, 平均粒径约25 nm. 通过循环伏安(CV)和计时电流法研究了Ti/纳米TiO2-Pt修饰电极对乙二醛直接电氧化的电催化活性, 结果表明, 修饰电极对乙二醛的直接电氧化呈现良好的催化活性, 在0.60和1.23 V(vs SCE)出现两个氧化峰, 二者电流密度分别为16 和42 mA·cm-2, 约为纯Pt电极的2倍和1.5倍, 反应过程受浓差扩散控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号