首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speciation analysis of selenomethylcysteine (SeMeCys), selenomethionine (SeMet) and selenocystine (SeCys) has been performed using a direct amino acid analysis method with high-performance anion-exchange chromatography (HPAEC) coupled with integrated pulsed amperometric detection (IPAD). Three selenoamino acids could be baseline-separated from 19 amino acids using gradient elution conditions for amino acids and determined under new six-potential waveform. Detection limits for SeMeCys, SeMet and SeCys were 0.25, 1 and 20 microg/L (25 microL injection, 10 times of the baseline noise), respectively. The relative standard deviations (RSDs) of 200 microg/L SeMeCys, SeMet and SeCys were 3.1, 4.1 and 2.8%, respectively (n=9, 25 microL injection). The proposed method has been applied for determination of selenoamino acids in extracts of garlic and selenious yeast granule samples. No selenoamino acids were found in garlic. Both SeMet and SeCys were detected in selenious yeast tablet with the content of 45 and 129 microg Se/g, respectively. Selenoamino acids standards were spiked in garlic and yeast granule samples and the recovery ranged from 90 to 106%.  相似文献   

2.
An analytical method for determining seleno‐methionine, methyl‐seleno‐cysteine, and seleno‐cystine in wheat bran was developed and validated. Four different extraction procedures were evaluated to simultaneously extract endogenous free and conjugated seleno‐amino acids in wheat bran in order to select the best extraction protocol in terms of seleno amino acid quantitation. The extracted samples were subjected to a clean‐up by a reversed phase/strong cation exchange solid‐phase extraction and analyzed by chiral hydrophilic interaction liquid chromatography‐tandem mass spectrometry. The optimized extraction protocol was employed to validate the methodology. Process efficiency ranged from 58 to 112% and trueness from 73 to 98%. Limit of detection and limit of quantification were lower than 1 ng/g. Four wheat bran samples were analyzed for both total Se and single seleno‐amino acids determination. The results showed that Se‐ seleno‐methyl‐l selenocysteine was the major seleno‐amino acid in wheat bran while seleno‐methionine and seleno‐cysteine were both minor species.  相似文献   

3.
The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace–liquid phase microextraction technique followed by gas chromatography–flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner‐shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L−1. The other analytical parameters were obtained in the following ranges: enrichment factors 240–327, extraction recoveries 72–98% and limits of detection 0.1–0.8 mg L−1 in solution and 0.6–3.2 μg g−1 in solid. Relative standard deviations for the extraction of 100 mg L−1 of each analyte were obtained in the ranges of 4–7 and 5–8% for intra ‐ day (n = 6) and inter ‐ day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co‐amoxiclav by the proposed method.  相似文献   

4.
Solid-phase microextraction (SPME) is used as a sample preparation strategy for gas chromatographic (GC) analysis of the seleno amino acids, selenomethionine (SeMet), selenoethionine (SeEt) and selenocystine (SeCys). Acylation of the amino group and esterification of the carboxylic group in these compounds was performed with isobutylchloroformate to increase volatility. The amino acid derivatives were then extracted by silica fibers with polydimethylsiloxane (PDMS) coatings prepared by the sol-gel process. Investigations of extraction time, acid and salt addition, and polymer length (for the sol-gel process) were conducted with the goal of procedural optimization. Initial characterizations were conducted using gas chromatography with flame ionization detection (GC-FID). Inductively coupled plasma mass spectrometric detection was employed for final selenium detection. Sub-ppb detection limits were obtained for all analytes although relative standard deviations were higher than those typically obtained in solid-phase microextraction.  相似文献   

5.
A new, simple and cheap dispersive liquid–liquid microextraction (DLLME) procedure was optimized for the preconcentration of trace amounts of Ni(II) as a prior step to its determination by flame atomic absorption spectrometry (FAAS). It is based on the microextraction of nickel, where appropriate amounts of the extraction solvent (CHCl3), disperser solvent (ethanol) and chelating agent, name 5‐[(Z)‐isoxazol‐3‐yl‐diazenyl]‐2‐methyl‐quinolin‐8‐ol (MMD), were firstly synthesized/characterized and used. Various parameters that affect the extraction procedure such as pH, centrifugation rate and time, the chelating agent (MMD) concentration and sampling volume on the recovery of Ni(II) were investigated. The preconcentration of a 20 ml sample solution was thus enhanced by a factor of 80. The resulting calibration graph was linear in the range of 0.24–10 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (3 s/b) obtained under optimal conditions was 1.00 μg L−1. The relative standard deviation for certified reference material determinations was 1.2%. The accuracy of the method was verified by the determination of Ni(II) in the certified reference material of wastewater (Waste water CWW TMD). The proposed procedure was successfully applied to the determination of Ni(II) in some fake jewelry and cosmetics samples.  相似文献   

6.
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode‐array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10−2–10.0 μg/mL for caffeic acid, 1.3 × 10−3–1.9 μg/mL for p‐hydroxycinnamic acid, 2.8 × 10−3–4.1 μg/mL for ferulic acid, and 2.7 × 10−3–4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1–1.0 ng/mL, and satisfactory recoveries (92.5–111.2%) and precisions (RSDs 1.1–9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods.  相似文献   

7.
Li  Li Hua  Zhang  Hong Fen  Hu  Shuang  Bai  Xiao Hong  Li  Shang 《Chromatographia》2012,75(3-4):131-137

In this paper, two methods, organic solvent dispersive liquid–liquid microextraction (OS-DLLME) and ionic liquid dispersive liquid–liquid microextraction (IL-DLLME), coupled with high-performance liquid chromatography have been critically compared and introduced for the analysis of the eight coumarin compounds (psoralen, isopsoralen, bergapten, isobergapten, oxypeucedanin, imperatorin, osthole, and isoimperatorin) in Radix Angelicae Dahuricae samples. Experimental conditions have been investigated for both OS-DLLME and IL-DLLME. Under optimal conditions, the detection limits of the eight coumarin compounds obtained by OS-DLLME and IL-DLLME ranged between 0.002–0.026 ng mL−1 and 0.013–0.66 ng mL−1, respectively. The relative standard deviations (RSDs, n = 9) were lower than 8.7 and 8.4% with enrichment factors in the range of 145–380 and 130–230 folds for OS-DLLME and IL-DLLME, respectively. The results showed that there were no significant deviations between the two DLLME methods for the determination of the eight coumarin compounds. Both methods were simple, fast, efficient, and inexpensive. However, compared with IL-DLLME, the OS-DLLME technique exhibited a higher extraction capacity for the eight target analytes.

  相似文献   

8.

A rapid and simple analytical method for the determination of ten chlorinated priority substances (hexachloro-1,3-butadiene, pentachlorobenzene, hexachlorobenzene, hexachlorocyclohexane isomers, heptachlor, and heptachlor epoxides) in fish samples using QuEChERS extraction, dual dispersive solid-phase extraction (dSPE) clean-up, and GC analysis was developed. For the extraction, two published extraction/partitioning procedures were evaluated, and the recoveries obtained for the analytes (in range 54–98 % with RSDs ≤15 %) were in favour of the conventional QuEChERS method. The use of the dual dSPE clean-up yields cleaner extracts than in the case of single dSPE, which enables the use of ECD for the detection of the analytes and simplifies the maintenance of the GC system. The method was optimised using homogenates of chub fish that is frequently sampled for monitoring purposes. The linearity of the method was evaluated using matrix-matched calibration curves (in the range 2–50 μg kg−1), and correlation coefficients (r 2) in the range 0.9927–0.9992 and RSDs of the relative response factors (RRF) below the value of 20 % were achieved. LODs ranged from 0.5 to 1.1 μg kg−1, while LOQs ranged from 1.5 to 3.5 μg kg−1. The accuracy of the method was verified by the analysis of the NIST standard reference material SRM 1946 (Lake Superior Fish Tissue), and most of the analytes of interest presented good agreement with the certified values.

  相似文献   

9.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

10.
A technique for the speciation of selenomethylcysteine (SeMeCys), selenocystine (SeCys), selenite [Se(IV)] and selenomethionine (SeMet) was established in this paper using high-performance anion-exchange chromatography coupled with atomic fluorescence spectrometry (HPAEC-AFS). Analytes were separated on an AminoPac PA10 column and then digested by on-line ultraviolet (UV) irradiation, which destroyed organic compound structure. Hydride generation was used as an available sample introduction technique for atomic fluorescence detection. The detection limits of four compounds were 1-5 microg/L (250 microL injection, 10 times of the baseline noise). The relative standard deviations (RSDs), calculated from seven consecutive injections of 100 microg/L standard mixtures, were from 2 to 4%. Selenious yeast tablet, which had been proposed as selenium supplement, and human urine collected from a volunteer were analyzed. Good spiked recoveries from 86 to 103% were obtained.  相似文献   

11.
Results of an international intercomparison study (CCQM-P86) to assess the analytical capabilities of national metrology institutes (NMIs) and selected expert laboratories worldwide to accurately quantitate the mass fraction of selenomethionine (SeMet) and total Se in pharmaceutical tablets of selenised-yeast supplements (produced by Pharma Nord, Denmark) are presented. The study, jointly coordinated by LGC Ltd., UK, and the Institute for National Measurement Standards, National Research Council of Canada (NRCC), was conducted under the auspices of the Comité Consultatif pour la Quantité de Matière (CCQM) Inorganic Analysis Working Group and involved 15 laboratories (from 12 countries), of which ten were NMIs. Apart from a protocol for determination of moisture content and the provision of the certified reference material (CRM) SELM-1 to be used as the quality control sample, no sample preparation/extraction method was prescribed. A variety of approaches was thus used, including single-step and multiple-step enzymatic hydrolysis, enzymatic probe sonication and hydrolysis with methanesulfonic acid for SeMet, as well as microwave-assisted acid digestion and enzymatic probe sonication for total Se. For total Se, detection techniques included inductively coupled plasma (ICP) mass spectrometry (MS) with external calibration, standard additions or isotope dilution MS (IDMS), inductively coupled plasma optical emission spectrometry , flame atomic absorption spectrometry and instrumental neutron activation analysis. For determination of SeMet in the tablets, five NMIs and three academic/institute laboratories (of a total of five) relied upon measurements using IDMS. For species-specific IDMS measurements, an isotopically enriched standard of SeMet (76Se-enriched SeMet) was made available. A novel aspect of this study relies on the approach used to distinguish any errors which arise during analysis of a SeMet calibration solution from those which occur during analysis of the matrix. To help those participants undertaking SeMet analysis to do this, a blind sample in the form of a standard solution of natural abundance SeMet in 0.1 M HCl (with an expected value of 956 mg kg−1 SeMet) was provided. Both high-performance liquid chromatography (HPLC)–ICP-MS or gas chromatography (GC)–ICP-MS and GC-MS techniques were used for quantitation of SeMet. Several advances in analytical methods for determination of SeMet were identified, including the combined use of double IDMS with HPLC-ICP-MS following extraction with methanesulfonic acid and simplified two-step enzymatic hydrolysis with protease/lipase/driselase followed by HPLC-ICP-IDMS, both using a species-specific IDMS approach. Overall, satisfactory agreement amongst participants was achieved; results averaged 337.6 mg kg−1 (n = 13, with a standard deviation of 9.7 mg kg−1) and 561.5 mg kg−1(n = 11, with a standard deviation of 44.3 mg kg−1) with median values of 337.6 and 575.0 mg kg−1 for total Se and SeMet, respectively. Recovery of SeMet from SELM-1 averaged 95.0% (n = 9). The ability of NMIs and expert laboratories worldwide to deliver accurate results for total Se and SeMet in such materials (selensied-yeast tablets containing approximately 300 mg kg−1 Se) with 10% expanded uncertainty was demonstrated. The problems addressed in achieving accurate quantitation of SeMet in this product are representative of those encountered with a wide range of organometallic species in a number of common matrices. Figure Looking into the quantitative speciation of selenium in pharmaceutical supplements Photo courtesy of LGC.  相似文献   

12.
Fu  Lingyan  Liu  Xiujuan  Hu  Jia  Zhao  Xinna  Wang  Huili  Huang  Changjiang  Wang  Xuedong 《Chromatographia》2009,70(11):1697-1701

In the present work, a simple, rapid and sensitive sample pre-treatment technique, dispersive liquid–liquid microextraction (DLLME) coupled with liquid chromatography-fluorescence detection (LC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in soil samples. Methanol was first used as extraction solvent for the extraction of pesticides from the soil samples and then as dispersive solvent in the DLLME procedure. Under the optimum extraction conditions, the linearity was obtained in the concentration range of 0.1–1,000 ng g−1 for carbaryl and 1–5,000 ng g−1 for triazophos, respectively. Correlation coefficients varied from 0.9997 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 14 to 110 pg g−1. The relative standard deviation (RSDs, for 20.0 ng g−1 of each pesticide) varied from 1.96 to 4.24% (n = 6). The relative recoveries of two pesticides from soil A1, A2 and A3 at spiking levels of 10.0, 20.0 and 50.0 ng g−1 were in the range of 88.2–108.8%, 80.8–110.7% and 81.0–111.1%, respectively. The results demonstrated that DLLME was a sensitive and accurate method to determine the target pesticides, at trace levels, in soils.

  相似文献   

13.
Han  Yuan Yuan  Wang  Li Yong  Zhao  Yan Yan  Li  Yue Qiu  Liu  Li Yan 《Chromatographia》2013,76(23):1747-1753

Dispersive liquid–liquid microextraction (DLLME) assisted with salting-out was applied for the determination of five aromatic amines in water samples by using gas chromatography with flame ionization detection. In this extraction method, several factors influencing the extraction efficiency of the target analytes, such as extraction and disperser solvent type and their volume, salt addition and amount, and pH, were studied and optimized. Under the optimal DLLME conditions, good linearity was observed in the range of 4–1,000 ng mL−1 with the RSDs from 1.2 to 7.9 %. The LODs based on S/N of 3 ranged from 0.2 to 3.4 ng mL−1 and the enrichment factors ranged from 207 to 4,315. The proposed method was successfully applied to the water samples collected from the tap and the lake, and the relative recoveries were in the range of 87.7–108.4 %.

  相似文献   

14.
《Microchemical Journal》2008,88(2):139-146
Solid-phase microextraction (SPME) and solid-phase extraction (SPE) procedures were coupling with microwave-assisted micellar extraction for organochlorine pesticides residues determination in seaweed samples. They were optimized, compared and discussed.Preliminary experiments were performed in order to study experimental conditions for the extraction of pesticides from spiked seaweed samples with microwave-assisted micellar extraction (MAME) using a non-ionic surfactant (Polyoxyethylene 10 Lauryl Ether). After that, SPME and SPE were used to clean-up and preconcentrate MAME extract prior the analysis by liquid chromatography with photodiode array (PDA) detection.Excellent results were obtained for both procedures. Average pesticide recoveries between 80.5 and 104.3% for MAME-SPME and between 73.9 and 111.5% for MAME-SPE were obtained. Relative standard deviations (RSDs) were lower than 10.3% and 5.3% respectively for all recoveries tested, and LOD between 138–348 ng g 1 for MAME-SPME and 2–38 ng g 1 for MAME-SPE were obtained. The method was validated using Soxhlet extraction procedure.Both methods were applied to analyse target organochlorine pesticides in several seaweed samples and results were compared. These results show the great possibilities of combining MAME-SPE-HPLC-UV for the analysis of seaweed samples, improving the selectivity and sensitivity in the determination of organochlorine pesticides analysis for this kind of samples.  相似文献   

15.
For the analysis of edible oils, saponification is well known as a useful method for eliminating oil matrices. The conventional approach is conducted with alcoholic alkali; it consumes a large volume of organic solvents and impedes the retrieval of analytes by microextraction. In this study, a low‐organic‐solvent‐consuming method has been developed for the analysis of benzo[a]pyrene in edible oils by high‐performance liquid chromatography with fluorescence detection. Sample treatment involves aqueous alkaline saponification, assisted by a phase‐transfer catalyst, and selective in situ extraction of the analyte with a supramolecular solvent. Comparison of the chromatograms of the oil extracts obtained by different microextraction methods showed that the supramolecular solvent has a better clean‐up effect for the unsaponifiable matter from oil matrices. The method offered excellent linearity over a range of 0.03– 5.0 ng mL−1 (r > 0.999). Recovery rates varied from 94 to 102% (RSDs <5.0%). The detection limit and quantification limit were 0.06 and 0.19 μg kg−1, respectively. The proposed method was applied for the analysis of 52 edible oils collected online in China; the analyte contents of 23 tested oil samples exceeded the maximum limit of 2 μg kg−1 for benzo[a]pyrene set by the Commission Regulation of the European Union.  相似文献   

16.
Herein, ultrasound-assisted emulsification microextraction (USAEME) and dispersive liquid–liquid microextraction (DLLME) methods based on applying low-density organic solvents have been critically compared for the speciation of inorganic selenium, Se(IV) (selenite) and Se(VI) (selenate) in environmental water samples by gas chromatography-flame ionization detection (GC-FID). At pH 2 and T = 75 °C for 7 min, only Se(IV) was able to form the piazselenol complex with 4-nitro-o-phenylenediamine. Piazselenol was extracted using an extraction solvent and was injected into a GC-FID instrument for the determination of Se(IV). Conveniently, Se(VI) remained in the aqueous phase. Total inorganic selenium was determined after the reduction of Se(VI) to Se(IV) and prior to the above procedures. The Se(VI) concentration was calculated as the difference between the measured total inorganic selenium and Se(IV) content. The effect of various experimental parameters on the efficiencies of the two methods and their optimum values were studied with the aid of response surface methodology and experimental design. Under the optimal conditions, the limit of detections (LODs) for Se(IV) obtained by USAEME-GC-FID and DLLME-GC-FID were 0.05 and 0.11 ng mL−1, respectively. The relative standard deviations (RSDs, n = 6) for the measurement 10 ng mL−1 of Se(IV) were 5.32% and 4.57% with the enrichment factors of 2491 and 1129 for USAEME-GC-FID and DLLME-GC-FID, respectively. Both methods were successfully applied to the analysis of inorganic selenium in different environmental water samples and certified reference material (NIST SRM 1643e).  相似文献   

17.
A polymeric ionic liquid modified stainless steel wire for solid‐phase microextraction was reported. Mercaptopropyl‐functionalized stainless steel wire that was formed by co‐condensation of tetramethoxysilane and 3‐mercaptopropyltrimethoxysilane via a sol‐gel process, which is followed by in situ surface radical chain‐transfer polymerization of 1‐vinyl‐3‐octylimidazolium hexafluorophosphate to result in polymeric ionic liquid modified stainless steel wire. The fiber surface was characterized by field emission scanning electron microscope equipped with energy dispersive X‐ray analysis. Coupled with GC, extraction performance of the fiber was tested with phenols and polycyclic aromatic hydrocarbons as model analytes. Effects of extraction and desorption conditions were investigated systematically in our work. RSDs for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 7.34 and 16.82%, respectively. The calibration curves were linear in a wide range for all analytes and the detection limits were in the range of 10–60 ng L?1. Two real water samples from the Yellow River and local waterworks were applied to test the as‐established solid‐phase microextraction–GC method with the recoveries of samples spiked at 10 μg L?1 ranged from 83.35 to 119.24%. The fiber not only exhibited excellent extraction efficiency, but also very good rigidity, stability and durability.  相似文献   

18.
Switchable‐hydrophilicity solvent liquid‐liquid microextraction and dispersive liquid‐liquid microextraction were compared for the extraction of piperine from Piper nigrum L. prior to its analysis by using high‐performance liquid chromatography with UV detection. Under optimum conditions, limits of detection and quantitation were found as 0.2–0.6 and 0.7–2.0 μg/mg with the two methods, respectively. Calibration graphs showed good linearity with coefficients of determination (R2) higher than 0.9962 and percentage relative standard deviations lower than 6.8%. Both methods were efficiently used for the extraction of piperine from black and white pepper samples from different origins and percentage relative recoveries ranged between 90.0 and 106.0%. The results showed that switchable‐hydrophilicity solvent liquid‐liquid microextraction is a better alternative to dispersive liquid‐liquid microextraction for the routine analysis of piperine in food samples. A novel scaled‐up dispersive liquid‐liquid microextraction method was also proposed for the isolation of piperine providing a yield of 102.9 ± 4.9% and purity higher than 98.0% as revealed by NMR spectroscopy.  相似文献   

19.
A method was developed for the simultaneous determination of selenomethionine (SeMet) and selenocysteine (SeCys) in meat (chicken and lamb muscles) and different offal tissues (heart, liver, kidney). The analytical procedure was based on the protein extraction with urea under reducing conditions (dithiothreitol), derivatization of SeCys and SeMet by carbamidomethylation with iodoacetamide (IAM) followed by quantitative proteolysis. The mixture of the derivatized Se-amino acids was purified by size-exclusion liquid chromatography (LC) and analysed by ion-paring reversed-phase HPLC–inductively coupled plasma mass spectroscopy (ICP MS). The quantification of SeCys and SeMet was carried out by the method of standard additions. 77SeMet was used to control the SeMet derivatization efficiency and recovery. The method was validated by the determination of the Se mass balance. The Se-amino acids accounted for 91 ± 8% of the total selenium (mean of 95 samples of seven tissues analysed over a period of 18 months). The method was applied to the discrimination of the contribution of selenoproteins (containing SeCys) and other Se-containing proteins (containing SeMet) in tissues of animals during supplementation studies (dose–effect and tolerance).  相似文献   

20.
We developed a CE and ultrasound‐assisted temperature‐controlled ionic liquid emulsification microextraction method for the determination of four parabens (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in personal care products including mouthwash and toning lotion. In the proposed extraction procedure, ionic liquid (IL, 1‐octyl‐3‐methylimidazolium hexafluorophosphate) was used as extraction solvent, moreover, no disperser solvent was needed. Parameters affecting the extraction efficiency including volume of IL, heating temperature, ultrasonic time, extraction time, sample pH, ionic strength, and centrifugation time were optimized. Under the optimized conditions, the method was found to be linear over the range of 3–500 ng/mL with coefficient of determination (R2) in the range of 0.9990–0.9998. The LODs and LOQs for the four parabens were 0.45–0.72 ng/mL and 1.50–2.40 ng/mL, respectively. Intraday and interday precisions (RSDs, n = 5) were in the range of 5.4–6.8% and 7.0–8.7%, respectively. The recoveries of parabens at different spiked levels ranged from 71.9 to 119.2% with RSDs less than 9.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号