首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This article deals with the polyaddition of a novel bis(seven‐membered cyclic carbonate), 1,2‐bis[3‐(1,3‐dioxepan‐2‐one‐5‐yl)‐propylthio]ethane, with the diamines 4,9‐dioxa‐1,12‐dodecanediamine and p‐xylylenediamine. The polyaddition was carried out at 30–70 °C for 6–24 h in dimethyl sulfoxide to obtain the corresponding polyhydroxyurethanes with number‐average molecular weights of 10,900–35,700 in good yields. The reaction of a monofunctional seven‐membered cyclic carbonate, 5‐allyl‐1,3‐dioxepan‐2‐one (7CC), with monoamines was also carried out to examine the reactivity in comparison with that of six‐ and five‐membered cyclic carbonates. The reaction rate constants of 7CC with n‐hexylamine and benzylamine were estimated to be 48.5 and 11.0 L/mol · h, respectively, in dimethyl sulfoxide‐d6 (initial reagent concentration = 1 M) at 30 °C. The seven‐membered cyclic carbonate ring was 2.98 and 5.82 kcal/mol more strained than those of the six‐ and five‐membered cyclic carbonates, respectively, according to a semiempirical molecular orbital calculation with the PM3 Hamiltonian. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4091–4100, 2001  相似文献   

2.
This article focuses on the substituent effect on the reactivity and selectivity of the ring‐opening direction in the reaction of five‐membered cyclic carbonates with n‐hexylamine. The reactivity of the cyclic carbonate and the formation selectivity of the adduct with a secondary hydroxyl group increased as a stronger electron‐withdrawing group was introduced at the α‐methylene of the cyclic carbonate. These results are discussed on the basis of the stability of intermediates, primary and secondary alcoholate anions, Mulliken charges on carbonyl carbon, and the bond lengths and orders of the O? C?O single bond. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3678–3685, 2001  相似文献   

3.
CO2‐based, crosslinked poly(hydroxyl urethane)s (PHUs) are accessed via a set of efficient reactions based on the addition chemistry of thiol‐ene and amines‐cyclic carbonates. This strategy to utilize 5‐membered cyclic carbonates produced from CO2 is robust, facile, modular, and atomically efficient in nature. The thiol‐ene reaction was utilized to access bis(cyclic carbonate), tris(cyclic carbonate), and tetrakis(cyclic carbonate) in quantitative yield from 4‐vinyl‐1,3‐dioxolan‐2‐one and thiols. Multi‐functional cyclic carbonates were simply mixed with diethylenetriamine and/or 1,6‐diaminohexane to generate crosslinked PHUs from 25 to 80 °C. These materials are easy to scale‐up and are potential candidates in many applications such as coatings, binders, and resins. The resulting polymers have glass transition temperatures between ?1 and 16 °C and thermal decomposition temperatures from 190 to 230 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
This article describes the synthesis of new cyclic compounds able to react with amines to get nonisocyanate polyurethanes (NIPUs). The contribution of the most studied five‐membered cyclic carbonate was compared to five‐membered cyclic dithiocarbonate analogous and to a six‐membered cyclic carbonate. Difunctional reactive species were obtained by a simple substitution reaction or an efficient thiol–ene coupling reaction. The products, obtained with high yields, were characterized by 1H NMR, 13C NMR, and Fourier tansform infrared spectroscopy analysis. The dicyclocarbonates were then used to synthesize NIPUs by step growth polymerization with several diamines. These materials exhibited glass transition temperatures from 19 to ?29 °C, molar mass from 1800 to 20,400 g mol?1, and a 20% mass loss temperature (Td = 20%) between 249 and 296 °C. Such materials are interesting candidates for coating applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3284–3296  相似文献   

5.
The bicyclic amidinium iodide effectively catalyzed the reaction of carbon dioxide and the epoxy‐containing oxetane under ordinary pressure and mild conditions with high chemoselectivity to give the corresponding oxetane monomer containing five‐membered cyclic carbonate quantitatively. The cationic ring‐opening polymerization of the obtained monomer by boron trifluoride diethyl ether proceeded to give linear polyoxetane bearing five‐membered cyclic carbonate pendant group in high yield. The molecular weight of the polyoxetane was higher than that of polyepoxide obtained by the cationic ring‐opening polymerization of epoxide monomer containing five‐membered cyclic carbonate. The cyclic carbonate functional crosslinked polyoxetanes were also synthesized by the cationic ring‐opening copolymerization of cyclic carbonate having oxetane and commercially available bisoxetane monomers. Analyses of the resulting polyoxetanes were performed by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2606–2615  相似文献   

6.
Allyl ether‐functional polycarbonates, synthesized by organocatalytic ring‐opening polymerization of the six‐membered cyclic carbonate monomer 2‐allyloxymethyl‐2‐ethyltrimethylene carbonate, were used to prepare non‐polyether polymer electrolytes. UV‐crosslinking of the allyl side groups provided mechanically stable electrolytes with improved molecular flexibility—Tg below ?20 °C—and higher ionic conductivity—up to 4.3 × 10?7 S/cm at 25 °C and 5.2 × 10?6 S/cm at 60 °C—due to the plasticizing properties of the allyl ether side groups. The electrolyte function was additionally demonstrated in thin‐film Li battery cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2128–2135  相似文献   

7.
Ring‐opening polymerization of a seven‐membered cyclic carbonate, 1,3‐dioxepan‐2‐one, was investigated with a novel initiator system, BCl3‐HCl·Et2O. Addition of HCl·Et2O promoted the polymerization even at 0°C to produce the corresponding polycarbonate with controlled molecular weight and narrow polydispersity ratio (< 1.2).  相似文献   

8.
The trifunctional five‐membered cyclic carbonate 2 and dithiocarbonate 3 were successfully synthesized by the reaction of trifunctional epoxide 1 with carbon dioxide and carbon disulfide, respectively. The crosslinking reactions of 2 with p‐xylylenediamine or hexamethylenediamine were carried out in dimethyl sulfoxide at 100 °C for 48 h to produce the corresponding crosslinked poly(hydroxyurethane)s quantitatively. The crosslinking reactions of 3 with both p‐xylylenediamine and hexamethylenediamine, followed by acetylation of thiol moiety, produced the corresponding crosslinked poly(thioester–thiourethane)s quantitatively. The obtained crosslinked poly(hydroxyurethane)s were thermally more stable than the analogous crosslinked poly(thioester–thiourethane)s, probably because of less thermal stability of thiourethane moiety than hydroxyurethane moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5983–5989, 2004  相似文献   

9.
A bifunctional five‐membered cyclic carbonate was synthesized from carbon dioxide and diglycidyl terephthalate, and its polyaddition with alkyl diamines were carried out in DMF at room temperature to obtain the corresponding poly(hydroxyurethane)s with Mn s in the range of 6300–13200 in good yields. The structures of the obtained polymers were confirmed by IR and NMR spectroscopy and their glass‐transition and decomposition temperatures were observed at 3–29 °C and 182–277 °C, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2375–2380, 2000  相似文献   

10.
The cyclic amidinium iodide effectively catalyzed the ring‐expansion addition of epoxides with carbon dioxide under ordinary pressure and mild conditions to obtain the corresponding five‐membered cyclic carbonates in high yield. The novel triazole‐linked bifunctional five‐membered cyclic carbonate was synthesized successfully by the click reaction of the azide‐ and the alkyne‐substituted five‐membered cyclic carbonates under ambient temperature in high yield. The chemical structure of the novel bis(cyclic carbonate) was characterized by one‐ and two‐dimensional nuclear magnetic resonance spectra. The obtained bis(cyclic carbonate) was converted with commercially available diamines to poly(hydroxyurethane) containing triazole segment without catalyst in high yield. Analyses of the resulting poly(hydroxyurethane)s were performed by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 986–993  相似文献   

11.
A silacyclobutane having a five‐membered cyclic carbonate structure (SBMC) was prepared, and its transition metal‐catalyzed ring‐opening polymerization at the four‐membered carbosilane unit was investigated as well as formation of carbosilane networked polymers and polymer gel electrolytes. The SBMC was synthesized by epoxidation of 1‐(4‐butenyl)‐1‐methylsilacyclobutane followed by insertion of CO2 to the epoxide. Ring‐opening polymerization of the silacyclobutane moiety in the SBMC readily proceeded by a transition metal catalyst such as platinum divinyltetramethyldisiloxane complex. A flexible networked polymer film was obtained by copolymerization of the SBMC with a small amount of crosslinker, hexamethylene‐1,6‐bis(1‐methylsilacyclobutane) (HMBS). The copolymerization of SBMC and HMBS in 1 M LiPF6 solution in ethylene carbonate and diethyl carbonate (3/7 v/v) gave a gel polymer electrolyte, which showed good ionic conductivity and could be applied to lithium ion batteries. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The reaction of glycidyl phenyl ether (GPE) with 1‐aminoalkanes‐intercalated α‐zirconium phosphate (α‐ZrP·1‐aminoalkane): 1‐aminoalkanes 1‐aminopropane (α‐ZrP·Pr), 1‐aminobutane (α‐ZrP·Bu), 1‐aminooctane (α‐ZrP·Oct), and 1‐aminohexadecane (α‐ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α‐ZrP·Pr), 60% (α‐ZrP·Bu), 67% (α‐ZrP·Oct), and 64% (α‐ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α‐ZrP·Pr, α‐ZrP·Bu, and α‐ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α‐ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α‐ZrP·1‐aminoalkane intercalation compounds was: α‐ZrP·Hed > α‐ZrP·Bu ≈ α‐ZrP·Oct > α‐ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1854–1861  相似文献   

13.
Palladium‐catalyzed base‐selective annulation of dibromonaphthalimide to different aryl boronate esters by combined Suzuki–Miyaura cross‐coupling and direct C−H arylation afforded a series of new five‐ and six‐membered ring annulated electron‐poor polycyclic aromatic hydrocarbons. Cesium carbonate (Cs2CO3) as auxiliary base in these C−C coupling cascade reactions led exclusively to six‐membered ring annulation, while the use of organic base diazabicycloundecene (DBU) afforded the corresponding five‐membered ring annulated products. This base‐dependent selective mode of annulation is attributed to different mechanistic pathways directed by the applied base. The selective annulation was revealed by single crystal X‐ray analysis of the respective five‐ and six‐membered ring annulated products. The optical and redox properties of the new polycyclic aromatic dicarboximides were characterized by UV/Vis absorption and fluorescence spectroscopy and cyclic voltammetry.  相似文献   

14.
The melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L‐proline (N‐CBz‐Hpr) with cyclic carbonate [trimethylene carbonate (tri‐MC) or tetramethylene carbonate (tetra‐MC)] at a wide range of molar fractions in the feed produced new degradable poly(ester‐carbonate)s. The influence of reaction conditions such as polymerization time and temperature on the yield and inherent viscosity of the copolymers was investigated. The polymerizations were carried out in bulk at 140 °C with 1.5 wt % stannous octoate as a catalyst for 30 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, gel permeation chromatography, and Ubbelohde viscometry. The copolymers synthesized exhibited moderate molecular weights with rather narrow molecular weight distributions. The values of the glass‐transition temperature (Tg) of the copolymers depend on the molar fractions of cyclic carbonate. For the poly(N‐CBz‐Hpr‐co‐tri‐MC) system, with a decreased tri‐MC content from 93 to 16 mol %, the Tg increased from ?10 to 60 °C. Similarly, for the poly(N‐CBz‐Hpr‐co‐tetra‐MC) system, when the tetra‐MC content decreased from 80 to 8 mol %, the Tg increased from ?18 to 52 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐tri‐MC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐tri‐MC)s was evaluated from weight‐loss measurements. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1435–1443, 2003  相似文献   

15.
Polymer‐supported pyridinium salts, prepared by quaternarization of crosslinked poly(4‐vinylpyridine) with alkyl halides, effectively catalyze the reaction of carbon dioxide (1 atm) and glycidyl phenyl ether (GPE) to afford the corresponding five‐membered cyclic carbonate (4‐phenoxymethyl‐1,3‐dioxolan‐2‐one). Poly(4‐vinylpyridine) quarternarized with alkyl bromides show high catalytic activities, and the reaction of carbon dioxide (1 atm) and GPE at 100 °C affords 4‐phenoxymethyl‐1,3‐dioxolan‐2‐one quantitatively in 6 h. The rate constant in the reaction of GPE and carbon dioxide in N‐methyl pyrrolidinone using poly(4‐vinylpyridine) quarternarized with n‐butyl bromide (kobs = 102 min?1) is almost comparable with those for homogeneous catalysts with good activities (e.g., LiI), and the rate of the reaction obeys the first‐order kinetics. A used catalyst may be recovered by centrifugation, and the recycled catalyst also promotes the reaction of GPE and carbon dioxide. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5673–5678, 2007  相似文献   

16.
Hydroiodides of secondary and primary amines effectively catalyzed the reaction of carbon dioxide and epoxides under mild conditions such as ordinary pressure and ambient temperature, to obtain the corresponding five‐membered cyclic carbonates in moderate to high yields. Detailed investigation showed that the catalytic activity was highly affected by the counter anions of the ammonium salts; the iodides catalyzed efficiently the carbonate‐forming reactions, whereas the bromide and chloride counterparts exhibited almost no catalysis. We also revealed that two important factors on the amine moieties that affected the catalytic reactions. First, the catalytic activity increased with increasing bulkiness of the substituents on the ammonium nitrogen atoms. Second, the catalysis became more efficient as the parent amines become more basic. Dicyclohexylammonium iodide was the best catalyst among the ammonium salts investigated in this study. As an application of this reaction system, we synthesized homo‐ and copolymers bearing epoxide pendant groups as substrates, which were converted with high efficiency into the corresponding homo‐ and copolymers bearing cyclic carbonate pendant groups under 1 atm at 45 °C. All polymers were easily purified simply by precipitation in water, and were isolated in high yields (>95%). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The synthesis of a three‐armed polymer with an isocyanurate–thiourethane core structure is described. Monofunctional reversible addition–fragmentation chain transfer (RAFT) agent 2 and trifunctional RAFT agent 5 were prepared from mercapto‐thiourethane and tris(mercapto‐thiourethane), which were obtained from the aminolysis of mono‐ and trifunctional five‐membered cyclic dithiocarbonates, respectively. The radical polymerization of styrene in the presence of 2,2′‐azobis(isobutyronitrile) and RAFT agent 2 in bulk at 60 °C proceeded in a controlled fashion to afford the corresponding polystyrene with desired molecular weights (number‐average molecular weight = 3000–10,100) and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.13). On the basis of the successful results with the monofunctional RAFT agents, three‐armed polystyrene with thiourethane–isocyanurate as the core structure could be obtained with trifunctional RAFT agent 5 in a similar manner. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5498–5505, 2005  相似文献   

18.
Ring‐opening metathesis polymerization (ROMP) of thioether‐derived oxanorbornene imide ( M1 ) and its copolymerization with various cycloolefin comonomers such as cyclopentene ( M2 ), cyclopent‐3‐en‐1‐ol ( M3 ), cycloheptene ( M4 ), and cyclooctene ( M5 ) using Hoveyda–Grubbs second generation catalyst has been investigated. Polymerizations were performed at two different temperatures (0 and 25 °C) and the obtained functional poly(olefin)s were characterized by nuclear magnetic resonance 1H and 13C (NMR), and infrared spectroscopy as well as size exclusion chromatography, differential scanning calorimetry, and thermogravimetric analysis analyses. Additionally, the dependence of the polymer composition on the reaction temperature and monomer feed was studied with time‐dependent 1H NMR experiments. Copolymerization of M1 with a five‐membered cycloolefin monomer M2 showed relatively low ROMP reactivity irrespective of the reaction conditions in comparison to M3 , M4 , and M5 monomers. In general, the degree of monomer incorporation into poly(olefin)s were determined in the order of M5 > M3 > M4 > M2 , and that sheds light on the effect of cycloolefin ring strain energies in the ruthenium‐alkylidene initiated ROMP. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1741–1747  相似文献   

19.
Ytterbium and lanthanum triflates were used as catalysts to cure diglycidylether of bisphenol A with different proportions of 1,3‐dioxan‐2‐one. The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing process. We observed the formation of a five‐membered cyclic carbonate that remains unreacted at the chain ends, because of an equilibrium process between the spiroorthocarbonates that had formed as intermediate species. The kinetics were studied by DSC experiments and analyzed with isoconversional procedures. The system catalyzed by ytterbium triflate had a higher curing rate. Thermogravimetric analysis and dynamic mechanical thermal analysis experiments were used to evaluate the properties of the materials obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5799–5813, 2005  相似文献   

20.
The cationic ring‐opening polymerization of a five‐membered thiourethane [3‐benzyl‐1,3‐oxazolidine‐2‐thione (BOT)] with boron trifluoride etherate afforded the corresponding polythiourethane with a narrow molecular weight distribution in an excellent yield. The molecular weight of the polymers could be controlled by the feed ratio of the monomer to the initiator. A kinetic study of the polymerization revealed that the polymerization rate of BOT (1.3 × 10?2 L mol?1 min?1) was two times larger than that of the six‐membered thiourethane [3‐benzyltetrahydro‐1,3‐oxazolidine‐2‐thione (BTOT); 6.8 × 10?3 L mol?1 min?1], and the monomer conversion obeyed the first‐order kinetic equation. These observations, along with the successful results in the two‐stage polymerization, supported the idea that this polymerization proceeded in a controlled manner. Block copolymerizations of BOT with BTOT were also carried out to afford the corresponding di‐ and triblock copolymers with narrow molecular weight distributions. The order of the 5% weight loss temperatures was as follows: poly(3‐benzyltetrahydro‐1,3‐oxazolidine‐2‐thione) [poly(BTOT)] > poly(BTOT54b‐BOT46) > poly(3‐benzyl‐1,3‐oxazolidine‐2‐thione) [poly(BOT)]. This indicated that an increase in the BTOT unit content raised the decomposition temperature. The order of the refractive indices was poly(BOT) > poly(BTOT54b‐BOT46) > poly(BTOT54b‐BOT46b‐BTOT50) > poly(BTOT); this was in accord with the order of the sulfur content in the polymer chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4795–4803, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号