首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用再掺杂方法制得了樟脑磺酸掺杂的聚苯胺(PAn-CSA),用溶液共混法制备PAn/BR导电复合膜.研究了聚苯胺与顺丁橡胶(BR)复合膜在间甲酚二次掺杂前后电导率的变化。实验表明:CSA对聚苯胺有较好的掺杂作用;二次掺杂使PAn复合膜电导率明显提高,其导电渗滤阈值略有降低,使卷曲的二次掺杂PAn链展开并通过分子链间的相互作用而自行组成导电通路.  相似文献   

2.
用EHMO-CO方法研究了卤代聚苯胺的能带结构及其掺杂导电机理,结果表明,在掺杂态卤代聚苯胺中形成单极化子晶格;取代主要通过改变带宽影响电导率,由掺杂而大幅度地提高了电导率是因为大大缩小了带隙,并进一步证实了外层d轨道的成键作用。  相似文献   

3.
自1976年发现第一个有机聚合物聚乙炔掺杂后具有类似金属的导电性以来,先后发现了聚吡咯、聚噻吩和聚苯胺(PAn)等导电聚合物,其中聚苯胺以其合成方法简单、稳定性好、较高的电导率及良好的电化学性能等被预言为是最有应用前景的导电高分子材料之一。近年来,随着导电聚合物研究的广泛开展和不断深入,  相似文献   

4.
二次掺杂对聚苯胺导电复合物性能的影响   总被引:3,自引:1,他引:3  
研究了聚苯胺与(苯乙烯-丁二烯)三嵌段共聚物或氯碘化聚乙烯复合物在间甲酚二次掺杂前后电导率的变化(提高2个数量级),根据二次掺杂使聚苯胺复合物增强永久形变和断面形貌脆断一次掺杂使卷曲的聚苯胺链展开并通过这间的弱相互作用而自行组成导电能通路,复合物二次掺杂前后的抗张强度和伸长率变化不大,说明其主链间的弱相互作用对应力无贡献,此外,还研究了二次掺杂对复合物在中性和酸必南中电致变色活性的影响。  相似文献   

5.
导电聚合物微/纳米结构保留了轻质、类金属电导率和可逆化学和电化学特性,又具有纳米材料的高比表面积、尺寸和量子效应,它在电子器件、储能器件、传感器件等领域具有广泛的技术应用前景。其中,由于聚苯胺的制备方法简单、原料易得和独特的质子酸掺杂和脱掺杂机制,使聚苯胺微/纳米结构的可控制备及其应用研究已成为当前导电聚合物研究的热点...  相似文献   

6.
高分子量聚苯胺/碳纳米管复合材料的合成与表征   总被引:8,自引:0,他引:8  
在导电聚合物中,聚苯胺(PANI)因其导电性能优良,环境稳定性好,合成工艺简单,原料成本低廉等优点,被认为是最有可能实际应用的导电聚合物.然而用传统方法合成的聚苯胺由于其分子量小,分子链中存在缺陷而使其导电性能和力学性能大大降低,从而限制了其实际应用.而高分子量聚苯胺的导电性能和力学性能比一般聚苯胺有较大的提高.  相似文献   

7.
胡传波  厉英  孔亚州  丁玉石 《化学进展》2016,28(8):1238-1250
导电聚合物作为一种新型高分子材料,由于具有可逆的氧化还原特性,在金属腐蚀防护领域具有潜在的应用前景。在众多的导电聚合物中,聚苯胺因其具有独特的抗点蚀、抗划伤和防止海洋生物附着等特殊性能,被广泛应用于金属材料、化学工业和航海航天等领域, 逐渐成为防腐涂料领域的研究热点。本文通过对单一聚苯胺涂层防腐性能不足的分析,系统总结了近年来改性聚苯胺涂层在金属腐蚀防护领域的研究进展,包括单一环取代聚苯胺涂层和N取代聚苯胺涂层、改性聚苯胺复合涂层和改性聚苯胺复合材料/树脂共混复合涂层;通过各种腐蚀测试手段比较了改性聚苯胺涂层与未改性聚苯胺涂层之间防腐性能的优劣,进一步证明了供电子取代基(如烷基、烷氧基和氨基等)能够提高聚苯胺涂层的防腐性能,复合改性或与树脂共混也能够提高聚苯胺及其衍生物涂层的防腐性能;同时展望了聚苯胺及其衍生物涂料未来发展的新趋势。  相似文献   

8.
聚苯胺具有良好的导电性和独特的掺杂-解掺杂特性,成为近年来备受关注的导电高分子材料,其特有的抗划伤、抗点蚀和钝化性能使其在金属防腐领域拥有巨大的应用前景。聚苯胺结构中苯环的存在,使得其分子链具有较大刚性,而分子间氢键又导致其难溶、难熔、可加工性能较差,严重制约了聚苯胺的应用。掺杂过程能有效改善聚苯胺的某些性能,或赋予其新的功能,扩展聚苯胺的应用。本文综述了聚苯胺的掺杂方式、掺杂机理、聚苯胺防腐材料的制备方法,以及其在金属防腐领域的应用,展望了聚苯胺的研究和应用前景。  相似文献   

9.
掺杂率对乳液聚合制备聚苯胺结构性能的影响   总被引:9,自引:0,他引:9  
对乳液聚合的十二烷基苯磺酸(DBSA)掺杂聚苯胺(PAn)进行不同pH值溶液浸泡处理。采用元素分析、红外光谱分析、X射线衍射及热失重分析等手段,研究了不同掺杂率对PAn结构性能以及PAn在普通有机溶剂中的溶解性能和导电性能的影响。结果表明:随DBSA掺杂率的增加,PAn的电导率及其在三氯甲烷中的溶解度增加,带有烷基长链的DBSA使PAn形成以DBSA为间隔的有序层状结构;而且合成的PAn-DBSA热稳定性良好。  相似文献   

10.
将十二烷基苯磺酸掺杂的聚苯胺(PAn DBSA)与乙烯丙烯酸共聚物(EAA)或聚烯烃弹性体(POE)进行溶液共混制得了PAn DBSA/EAA或PAn DBSA/POE导电复合物。研究了绝缘聚合物的化学结构对聚苯胺导电复合物形态结构及电性能影响。结果表明,极性聚合物EAA中的羧基能与PAn形成氢键并发生掺杂作用,复合物中卷曲的PAn主链能充分展开,导致PAn/EAA复合物具有非常低的逾渗域值(1.5%),PAn含量为20.0%时,电导率高达7.1S/cm。POE为非极性共聚物,与极性较强的PAn相容性较差,导致PAn/POE复合物具有较高逾渗域值(5.0%),PAn含量为20.0%时,电导率仅为3.0×10-5S/cm。  相似文献   

11.
Herein we report on the synthesis and characterization of TiO2 nanomaterials doped with anions like sulfur, carbon and nitrogen. Upon doping, the absorption extends well into the visible region. This shift in the absorption edge is accompanied by a concomitant narrowing of band gap. The resulting anion-doped TiO2 nanomaterials were characterized by XRD, XPS, elemental analysis, EDAX, TEM, UV-DRS, DC conductivity, AC impedance and cyclic voltammetric studies. XPS confirms the presence of the dopants and the elemental analysis determined the amount of dopants in TiO2. Electrochemical characterization was carried out by cyclic voltammetry at pHs 2, 6.5 and 10. As against the response of undoped TiO2, the doped samples show an active electrochemical response indicating an induced charge transfer across the titania/solution interface, thus forming two anodic peaks and a cathodic peak. This interesting and significant observation was understood in terms of band bending due to anion doping as well as to the pH changes in the experimental solutions.  相似文献   

12.
Apatite-type lanthanum silicate (La9.33Si6O26) has been attracting significant recent interest due to its high oxide ion conductivity. In this paper, synthesis and conductivity data for a range of doped samples (Mg, Ca, Sr, Ba, B, Ga and Zn) are reported, in particular, to compare the effect of rare earth vs Si site doping. The results show that Ga, B and Zn favour substitution on the Si site, while Ca, Sr and Ba favour La-site substitution. Mg is shown to be an ambi-site dopant, substituting on either site depending on the starting composition. The samples doped on the Si site show higher conductivities than comparable samples doped on the La site, providing further support for the importance of the silicate network in the conduction process, as initially predicted by atomistic modelling studies. For Ga doping on the Si site, the effect of varying the rare-earth size on the conductivities is also reported.  相似文献   

13.
IntroductionThestudiesonconductivepo1ymershavebeenofmuchinterestsbothinex-perimentalworkandtheorysincetheresultsonconductivityofdopedpolyacety-lenewerereported.Itwasreportedthatthehighestconductivityofdopedpoly-acetylenereachedupto1O5s/cmandjustfellintherangeofmetalconduction[1].Somepeoplehaveputforwardone-dimension(1D)graphitematerialfamilytobeconsistedofcondensedaromaticrings.Therearetwbkindsofimportantmolecularskeletonsforms,oneisanextended.versionfrompolyacene.Thepolyacenecanbeobtaintedb…  相似文献   

14.
Heavy chemical doping and high electrical conductivity are two key factors for metal‐free graphene electrocatalysts to realize superior catalytic performance toward hydrogen evolution. However, heavy chemical doping usually leads to the reduction of electrical conductivity because the catalytically active dopants give rise to additional electron scattering and hence increased electrical resistance. A hierarchical nanoporous graphene, which is comprised of heavily chemical doped domains and a highly conductive pure graphene substrate, is reported. The hierarchical nanoporous graphene can host a remarkably high concentration of N and S dopants up to 9.0 at % without sacrificing the excellent electrical conductivity of graphene. The combination of heavy chemical doping and high conductivity results in high catalytic activity toward electrochemical hydrogen production. This study has an important implication in developing multi‐functional electrocatalysts by 3D nanoarchitecture design.  相似文献   

15.
The end-substitution effects on the geometric and electronic structures of oligoheterocyclics are systematically studied using the density functional theory. It is found that the influence of the end-substitution does not depend on the heteroatom. End-substitution plays a fine-tune effect on the geometry and the excitation state. While the influences on the conducting type (p-type or n-type) and the inter-chain charge carrier hoping channels are much different between the electron-donating –CH 3 and electron–accepting –CN substitutions. Both molecular electrostatic potentials and charge carrier injection rates indicate that the –CH 3/–CH 3 substitution is beneficial to the p-type doping, while the –CN/–CN substitution is in favor of the n-type doping, which is in agreement with the experimental observations. The –CH 3 substituted packing dimers exert similar intermolecular interactions to the unsubstituted ones. The –CN substituted packing dimers yield much stronger intermolecular interactions comparing to the –CH 3 substituted ones. It could be anticipated that the –CN substitution would be helpful to the charge carrier hopings between chains and thereby enhance the conductivity.  相似文献   

16.
Polystyrene/graphene nanoplatelets (PS/GNP) and polystyrene/multi-walled carbon nanotube (PS/MWCNT) nanocomposites were prepared through solution mixing processing. The effect of carbon filler (CF) (GNP or MWCNT) doping on the DC/AC electrical conductivity, dielectric characteristics and optical parameters (absorption coefficient, α and band gap energy, Eg) of nanocomposites were investigated and compared for similar doping concentrations. The observed behavior of the DC surface conductivity for PS/CF nanocomposites was explained according to the classical percolation theory, where the percolation thresholds (ϕc) for PS/GNP and PS/MWCNT nanocomposites were determined as 12.0 vol% and 3.81 vol% and the critical exponents (t) were calculated as 2.19 and 2.13, respectively. These results indicate that CFs create three dimensional CF network in PS matrix. The dielectric relaxation properties and the AC conductivity studied by means of Broadband Dielectric Spectroscopy (BDS) measurements, showed that the presence of carbon fillers significantly enhanced the capacitive/charge storage capabilities of the nanocomposites. The optical band gap energies (Eg) of PS/GNP and PS/MWCNT nanocomposites were obtained by using Tauc method. From applicative point of view, with their enhanced dielectric and AC conductivity properties of the PS/GNP and PS/MWCNT nanocomposites have the potential to be used in energy storage and electromagnetic interference (EMI) shielding applications.  相似文献   

17.
Dy doping and carbon coating are adopted to synthesize a LiFePO4 cathode material in a simple solution environment. The samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated by cyclic voltammetry (CV) and galvanostatic charge‐discharge tests. An initial discharge capacity of 153 mAh/g was achieved for the LiDy0.02Fe0.98PO4/C composite cathode with a rate of 0.1 C. In addition the electronic conductivity of Dy doped LiFePO4/C was enhanced to 1.9 × 10?2 Scm?1. The results suggest that the improvement of the electrochemical properties are attributed to the dysprosium doping and carbon coating which facilitates the phase transformation between triphylite and heterosite during cycling. XRD data indicate that doping did not destroy the lattice structure of LiFePO4. To evaluate the effect of Dy substitution, cyclic voltammetry was used at room temperature. prepared. From Cv measurement a more symmetric curve with smaller interval between the cathodic and anodic peak current was obtained by Dy substitution. This denoted a decreasing of polarization with Dy substitution, which illustrated an enhancement of electrochemical performances.  相似文献   

18.
La(Co, Cu)O(3-δ) ceramics were prepared by pressureless sintering of citrate precursor powders, and their thermoelectric properties were investigated with an emphasis on the influence of Cu doping and phase structure as well as microstructure. It was found that a secondary phase first appeared in the form of a network along the grain boundaries and then changed to dispersion with increasing Cu content, which effectively reduced the lattice thermal conductivity of the materials. The thermal conductivity was only 1.21 W m(-1) K(-1) for the sample LaCo(0.75)Cu(0.25)O(3-δ), being much lower as for the thermoelectric oxide materials. In addition, a small amount of Cu substitution for Co increased the electrical conductivity greatly and the absolute Seebeck coefficient, whose sign was also reversed from negative to positive. The dimensionless figure of merit, ZT, of LaCoO(3-δ) oxides at low and middle temperatures can be remarkably enhanced by substituting Co with Cu.  相似文献   

19.
利用Wagner极化法研究了掺杂K4[Fe(CN)6]浅电子陷阱掺杂剂的溴碘化银T 颗粒晶体的电子电导率和空穴电导率,并与未掺杂的晶体样品进行对比,分别考察了实验温度、掺杂剂用量、掺杂位置等因素对实验结果的影响.结果表明,随掺杂剂用量的增加,晶体的电子电导率和空穴电导率都相应增加,这说明浅电子陷阱掺杂剂的掺杂有效地抑制了电子和空穴的复合.但其抑制作用却因掺杂位置的不同而不同,当掺杂量一定,掺杂剂掺在碘区附近时,晶体的电子电导率和空穴电导率的变化较明显.随着实验温度的增加,乳剂晶体的电子电导率和空穴电导率都下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号