首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
SrTiO3 nanorods were synthesized in cetanyl trimethyl ammonium bromide (CTAB) reverse microemulsion containing CTAB, n-hexanol, n-octane and water with Ba(OH)2 as reactants. The effects of different conditions such as ω00=nH2O/ nCTAB], aging time and the concentration of reactants on the formation of the nanorods were studied. Transmission electron microscope (TEM), electron diffraction (ED) and X-ray diffraction(XRD)were used to characterize the morphology and the structure of the synthesized nanorods. The results show that SrTiO3 nanorods with a length of 260~2 000 nm and a diameter of 50~100 nm belonging to single crystal are single cubic system. The molar ratio of Sr to Ti of products is 1.0 as determinded by ICP.  相似文献   

2.
均一形貌的ZnO纳米棒的制备及其光催化性能研究   总被引:20,自引:0,他引:20  
ZnO nanorods were synthesized from high purity Zn granule by a vapor phase deposition in the Ar + O2 gas. The products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The ZnO nanorods were typically 1~2 μm in length and 20~30 nm in diameter with an aspect ratio as high as 20. The UV absorption properties were detected and the results show that the ZnO nanorods have an extremely strong absorption at 200~380 nm wavelength. The results were good when the ZnO nanorods were used as photocatalyst.  相似文献   

3.
The synthesis of crystalline SnSe nanorods was successfully achieved via a chemical reaction between sodium selenosulfate (Na2SeSO3) and SnCl2·2H2O in alkaline aqueous solution in the presence of the complexing agent (trisodium citrate) at room temperature under ambient air. The product was characterized by X-ray diffraction (XRD), transmission electron microscopoy (TEM) and X-ray photoelectron spectroscopy (XPS). The results reveal that the SnSe nanorods are well crystalline with an average diameter of 85 nm and the lengths up to 10 μm. The possible mechanism for the formation of SnSe is also discussed.  相似文献   

4.
γ-Mn2O3with one dimensional (1D) nanostructure was prepared via hydrothermal treatment followed by decomposition. Transmission electron microscope (TEM) images showed that nanorods coexisted with nanotubes, with the aspet ration higher than 20 and the inner diameter of nanotubes about 10 nm. TGA-DTG, XRD and TEM were used to characterize the products. The factors of hydrothermal treating temperature, holding time and high concentration of SDS played important roles in the formation and growth of the 1D nanostructures.  相似文献   

5.
CaSO4纳米棒(线)的微乳法制备与表征   总被引:18,自引:0,他引:18  
CaSO4 Nanorods/wires were synthesized in quaternary W/O microemulsion solution containing triton X-100, cyclohexane and n-pentanol. Transmission electron microscopy (TEM) was utilized to characterize the shape and size of products as-prepared, as well as electron diffraction (ED) pattern was obtained for designated nanorods (wires). It is revealed that ω0 (molar ratio of water to surfactant),reactants concentration and aging time play an important role in the formation of different morphologies and size of synthesized CaSO4 nanocrystal.  相似文献   

6.
氧化锌纳米棒的制备和生长机理研究   总被引:12,自引:0,他引:12  
ZnO nanorods are prepared by different assistants (cetyltrimethylammonium bromide,trisodium citrate and ethylene diamine anhydrous) favored hydrothermal synthesis with Zn(OH)2 colloid as the precursor. The samples are characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that the as-synthesized ZnO nanorods are of uniform size with 25 nm in diameter and 200~300 nm in length. The effects of the different assistants to the morphology, size and mechanism of nano-ZnO are discussed.  相似文献   

7.
羟基功能化离子液体中Ag纳米材料的制备及结构表征   总被引:2,自引:0,他引:2  
Ag nanoparticles were prepared using hydroxyl-functionalized ionic liquids as reductant and reaction medium. Nanoparticles with different particle sizes were obtained by using ionic liquids with different structures, while nanorods were harvested when the reaction temperature was increased. The materials obtained were investigated by XRD and TEM. The results indicate that the crystal is in face-centred cubic structure for both of Ag nanoparticles and nanorods, and the diameter of Ag nanoparticles prepared in 1-ethoxyl-3-methyl imidazolium tetrafluoroborate ([C2OHmim]BF4), 1-(4′-hydroxyl)butyl-3-methyl imidazolium tetrafluoroborate ([C4OHmim]BF4) and 1-(6′-hydroxyl)hexyl-3-methyl imidazolium tetrafluoroborate ([C6OHmim]BF4) ionic liquid is about 25, 15 and 10 nm, respectively. And the diameter of Ag nanorods is about 200 nm and 2 μm in length. Finally, the formation mechanism of Ag nanoparticles and nanorods is proposed.  相似文献   

8.
于龙  张校刚 《无机化学学报》2004,20(9):1112-1116
Vanadium oxide/titanate composites nanorods (VOx/ Titanate-CNRs) were synthesized in high yield by using titanate nanotubes as templates and V2O5·nH2O sol as the precursors under hydrothermal conditions (200 ℃, 48 h). Samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis by X-ray (EDAX). X-ray diffraction structure determination showed that this new phase had the composition of V3O7·H2O and crystallized with orthorhombic symmetry. SEM and TEM tests showed that the samples were uniform straight rods with the diameter range from around 100 to 300 nm and the length over 10 μm. The chemical compositions of the samples were determined with EDXA. The electrochemical tests of samples (titanates nanotubes, V2O5 and VOx/ Titanate-CNRs) prove that VOx/ Titanate-CNRs exhibit a better electrochemical performance.  相似文献   

9.
多枝状γ -MnOOH的低温水热合成与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
γ-MnOOH multipods were synthesized by a low temperature hydrothermal method. The synthetic procedure is based on the use of PEG200 to reduce KMnO4 upon controlling the volume of PEG200. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were used to characterize the products. All pods of them are single crystals, the diameter of each pod is about 40~120 nm and the length is about 800~2 400 nm. A possible formation mechanism was proposed that the intermediate products with a lamellar morphology curled into γ-MnOOH nanorods during the reaction process at first, and then γ-MnOOH multipods formed for the multi-nuclei growth on the tips of the γ-MnOOH nanorods when they were good crystallization.  相似文献   

10.
The cantaloupe-like particles of CeOHCO3 were synthesized in aqueous solution by using cetyltrimethylammonium bromide (CTAB) as soft template. Then, the bunchiness rods of CeO2 were obtained by calcining CeOHCO3 at 450 ℃. The results of thermogravimetric/differential thermal analysis reveal that an endothermic reaction with decomposition is involved in the transformation process from CeOHCO3 to CeO2. By scanning electron microscopy and X-ray diffraction analysis, it is found that the orthorhombic phase CeOHCO3 particles are constituted of short nanorods with diameters ranging from several tens nm to over 100 nm, and the cubic phase CeO2 rods are composed of small particles with diameter ca. 15 nm. From the results of UV-Vis absorption and photoluminescence analysis, it is found that the CeO2 possess abundant defects, and the band gaps of the CeO2 and CeOHCO3 are ca. 2.70 eV and 3.87 eV, respectively.  相似文献   

11.
Gao S  Xie Y  Lu J  Du G  He W  Cui D  Huang B  Jiang M 《Inorganic chemistry》2002,41(7):1850-1854
GaP nanorods and nanospheres were synthesized from a mild benzene-thermal route at 240 and 300 degrees C, respectively, using Na, P, and GaCl(3) as the starting materials. The structure of the products was identified as zinc blende phase by X-ray powder diffraction (XRD). Transmission electron microscopy (TEM) images showed that, when the reaction temperature was 240 degrees C, the products were nanorods with widths of 20-40 nm and lengths of 200-500 nm and nanospheres with diameters of 20-40 nm. However, when the reaction temperature was increased to 300 degrees C, the products were only nanospheres, and the diameters increased to 40-60 nm. The reaction proceeded through a metallic gallium intermediate, and a solution-liquid-solid (SLS) mechanism was proposed for the one-dimensional growth. The products were also investigated by UV-vis absorption and X-ray photoelectron spectroscopy.  相似文献   

12.
采用超音速气流粉碎技术低温固相合成NiO纳米颗粒前驱体,并通过在650~900 ℃下, NaCl熔盐介质中对前驱体进行焙烧,制备得到NiO纳米棒。采用XRD、SEM、TEM测试技术对NiO前驱体、NiO纳米棒的结构和形貌进行了表征。结果表明,前驱体为直径约25 nm球形颗粒,随着焙烧温度升高,逐渐生成直径为300 nm,长度约十几微米的纳米棒。反应过程中熔盐介质是纳米颗粒前驱体生长的关键因素。  相似文献   

13.
微波固相合成氧化锌纳米棒   总被引:4,自引:0,他引:4  
刘劲松  曹洁明  李子全  柯行飞 《化学学报》2007,65(15):1476-1480
通过前驱体的微波固相热分解法快速合成了氧化锌纳米棒, 其直径在60~385 nm之间, 长可达数微米. 前驱体则通过一步室温固相反应制备. 用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线分析(EDX)和透射电子显微镜(TEM)对产物的结构和形貌进行了表征. 同时, 对氧化锌纳米棒的光致发光(PL)性能作了测试, 结果表明在355 nm处有一个明显的近带隙发射峰. 另外, 对比实验表明, 微波辐射在氧化锌纳米棒的形成过程中起了关键性作用, 并对其形成机理进行了初步探讨.  相似文献   

14.
以CuSO4和NH3·H2O为原料,采用微乳-均匀沉淀耦合法制备了一维CuO纳米棒。用XRD、SEM、TEM、HRTEM和FTIR对产物的结构和形貌进行了表征。结果表明:产物为单斜晶相结构的CuO纳米棒,内部具有孔洞结构,其直径为40~110nm,长度为800~3000nm。可通过改变水核比(ω)、反应物的浓度、反应时间、反应温度等条件实现对CuO纳米棒形貌和尺寸的调控。探讨了可能的反应机理,并用热分析方法考察了CuO纳米棒对高氯酸铵(AP)分解的催化作用。  相似文献   

15.
采用Co(NH3)6Cl3为钴源,利用微乳法制备了Co3O4的纳米材料,可控合成了尺寸均一的边长约40~50 nm纳米立方和直径约400 nm的纳米球.并且考察了反应条件对产物形貌的影响,水与CTAB的摩尔比(w)和反应物浓度对产物形貌有着很大的影响,而反应温度对产物形貌基本没有影响.随着w值的增加,合成的纳米材料的尺...  相似文献   

16.
高琪  朱小芹  翟良君 《化学通报》2019,82(12):1093-1097
以氯化铜为前躯体,葡糖糖为还原剂,烷基胺(十六胺和十八胺的混合物)为络合剂和表面包覆剂,经过络合反应和溶剂热两步反应首先得到形貌均一、直径约为100 nm的铜纳米颗粒, 随后自发生长为五重孪晶铜纳米棒(仍含有部分颗粒)。实验过程中分别对溶剂热反应1 h、3 h和5 h后的还原产物的形貌特征加以表征,可以推断被还原的铜原子首先均匀成核形成初级铜纳米颗粒,经过奥斯特瓦尔德老化过程生长为五重孪晶的次级铜纳米颗粒,由于孪晶结构具有很高的生长活性,在烷基胺的表面包覆作用下生长为各项异性的铜纳米棒。该方法提供了一种有效的铜纳米棒的制备方法并且降低了一维铜纳米材料的合成成本。  相似文献   

17.
明胶-聚丙烯酸纳米微球可在4℃下自组装形成纳米棒,所形成的纳米棒结构规整并具有与纳米微球相同的直径.通过观察纳米棒形成的中间状态,发现该纳米棒由明胶-聚丙烯酸纳米微球一维排列而成.由于只有在较低温度下纳米微球才能形成棒状结构,并且圆二色性光谱数据证明明胶-聚丙烯酸纳米微球表面的明胶分子具有在低温下复性成为三螺旋构象的能力,因此可以推断明胶-聚丙烯酸纳米棒是由纳米微球表面的明胶分子通过复性为三螺旋结构所产生的氢键以及静电等力的作用一维自组装而形成的.  相似文献   

18.
人工活性膜模板制备铅钡铬酸盐纳米棒及其光学性能   总被引:1,自引:0,他引:1  
利用胶棉人工活性膜模板与乙二胺的协同作用,成功制备了铬酸铅、铬酸钡纳米棒.前者直径范围为28~55 nm,最大长径比为25,结构为单斜单晶;后者直径范围为24~38 nm,最大长径比为28,结构为正交单晶.产物相对于其体材料而言,红外光谱峰值仅有少量蓝移,而紫外-可见光谱最大吸收峰则分别蓝移了30 nm和35 nm,荧光发射峰也分别蓝移了9 nm和15 nm,这均是纳米材料量子尺寸效应的体现.还对产物的形成机理作了初步探讨.  相似文献   

19.
Zou G  Lu J  Wang D  Xu L  Qian Y 《Inorganic chemistry》2004,43(17):5432-5435
Carbon nanorods were produced with a yield of about 90% by the copyrolysis of C(6)H(6) and C(5)H(6) at 600 degrees C under the cocatalysis of Fe and Mg. Many novel Y-junction carbon nanorods were found in the products. The obtained carbon nanorods have a diameter in the range of 200-350 nm and are several micrometers in length. The effects of reactants, catalysts, and the temperature were investigated, and the experimental results indicate that C(5)H(6) and cocatalysts Fe and Mg play crucial roles in the formation of carbon nanorods. The possible formation mechanism of the carbon nanorods is discussed.  相似文献   

20.
Liang Cao  Michal Kruk 《Adsorption》2010,16(4-5):465-472
A variety of ordered mesoporous carbons (OMCs) were synthesized using ordered mesoporous silicas (OMSs) as hard templates and the mesophase pitch (MP) as a carbon precursor. The synthesis included the mixing of OMS with MP, the infiltration of OMS with MP at 450–550?°C and the carbonization of MP in OMS/MP composite followed by the dissolution of the OMS template. OMCs with structures of two-dimensional hexagonal arrays of nanorods and three-dimensional arrays of nanospheres were obtained through the replication of silica templates, including large-pore SBA-15, KIT-6, large-pore FDU-12 and SBA-16. In particular, 2-D hexagonal array of carbon nanorods (CMK-3 carbon) with (100) interplanar spacing of ~13 nm as well as an array of carbon nanospheres arranged in the face-centered cubic structure with the unit-cell parameter of 33 nm were successfully prepared. The specific surface areas of the resulting carbons were up to 400 m2/g, and the total pore volumes were up to 0.43 cm3/g, with the highest values achieved when the MP infiltration temperature was 500?°C. The OMCs exhibited narrow mesopore size distributions. As inferred from XRD, the frameworks of OMCs featured semi-graphitic structures even though moderate carbonization temperature (850?°C) was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号