首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
研究了一种基于活版印刷原理的中低密度基因芯片原位合成新方法, 该方法完全避免了掩模制备过程, 合成速度快、制备成本低、便于批量生产, 有望满足人们日益增长的对批量基因信息进行快速、低成本检测与分析的要求. 对活版印刷法寡核苷酸原位合成原理、合成工艺进行了详细探讨, 设计加工了一套手动压印微阵列的合成装置, 并对自驱动单体溶液微通道纤维管进行了筛选. 应用该方法在连接有手臂分子的载玻片上, 分别合成了4条探针、16和160个位点的寡核苷酸微阵列, 通过与互补的靶序列杂交和荧光分析, 微阵列上相同寡核苷酸探针的位点荧光强度均匀, 表明其寡核苷酸探针分布均匀; 错配分析还表明得到的寡核苷酸微阵列能实现单个碱基错配的检测.  相似文献   

2.
以3-N,N-二乙基氨基酚为原料合成了一系列荧光染料,用~1H NMR, ~(13)C NMR, IR, HRMS对结构进行了表征,检测了新型染料的光学性质,标记了牛血清白蛋白,比较了新染料与菁染料(Cy3)在凝集素微阵列芯片上的荧光信号值.结果显示,新型染料的最大发射波长均在600nm以上,斯托克斯位移约70nm左右,染料/蛋白质(D/P)标记效率高达1.5~1.8,在凝集素微阵列中新染料和Cy3的荧光信号值相当.表明新染料可以作为荧光标记物用于凝集素微阵列中检测糖链的变化.  相似文献   

3.
合成了一种Tb~(3+)配合物修饰的磁性纳米荧光探针cs124-DTPA-NH-PEGDBI-Fe3O4∶Tb。该复合荧光探针与Cu~(2+)有很强的结合能力,Cu~(2+)对Tb~(3+)配合物修饰的磁性纳米荧光探针具有荧光猝灭作用。实验表明,该复合荧光探针稳定性良好且有很好的水溶性,可在较宽的pH范围(5.0~10.0)快速检测Cu~(2+)。此外,在竞争实验中发现,该纳米荧光探针能够实现对溶液中Cu~(2+)的超灵敏和选择性检测而对其他多种常见离子响应较小,对Cu~(2+)的检测限甚至可达到1nmol/L。  相似文献   

4.
报道了一种基于发夹型荧光探针的甲基化酶活性的分析方法, 甲基化酶和相应的限制性内切酶的识别位点被设计在发夹型探针的茎部, 四甲基罗丹明(TAMRA)被连接在探针的5'端, 其荧光被连在3'端的熄灭基团4-(4'-二甲基对胺基偶氮苯)苯甲酸(DABCYL)所熄灭. 限制性内切酶可切割未发生甲基化修饰的探针, 导致探针的发夹结构遭到破坏, 引起TAMRA荧光信号的恢复. 根据荧光信号的恢复程度可实现对甲基化酶活性的分析. 在此基础上, 建立了一种简便、快速分析抗肿瘤药物对DNA甲基化酶活性的影响的方法, 为筛选针对基因甲基化异常引起的恶性肿瘤的治疗药物提供了一种新的思路和方法.  相似文献   

5.
结合磁共振成像(MRI)和荧光成像技术,以钆离子(Gd3+)、量子点及精氨酸(R)-甘氨酸(G)-天冬氨酸(D)(RGD)多肽等为功能单元,采用纳米载体组装技术构建了MRI弛豫率/荧光效率高和靶向性强的Gd3+与RGD共修饰的量子点双模态纳米探针(QDs@Gd3+-RGD),并将其用于胰腺癌细胞的双模态成像.实验结果表明,QDs@Gd3+-RGD双模态纳米探针具有较高的弛豫率,且能对胰腺癌patu8988细胞进行荧光和T1-weighted MR成像.  相似文献   

6.
以6-氟-7-氨基香豆素为荧光基团,氟代叠氮和7-硝基苯并氟咱(NBD)-哌嗪为H_2S反应基团和荧光淬灭基团,合成一种双反应H_2S荧光探针.探针对H_2S的识别性质研究表明,探针的两个反应基团与H_2S响应速率匹配,探针对H_2S具有高选择性和灵敏性,其荧光增强约3600倍,检测极限为4.0×10~(-8)mol/L.酶活性测试表明,探针可用于胱硫醚β合成酶(CBS)酶活性检测和抑制剂筛选.细胞成像实验表明,探针可用于细胞内H_2S的成像研究.  相似文献   

7.
以三联吡啶钌(Ru(bpy)3)为内核材料,通过反相微乳液法合成了表面带氨基的核壳结构荧光纳米粒子Ru(bpy)3/SiO2,利用透射电子显微镜、荧光光谱、紫外-可见光谱等手段进行表征,并进行了光稳定性、荧光分子泄露与纳米粒子表面氨基测定等实验,结果表明: 所合成的纳米粒子表面带氨基活性基团,每毫克纳米粒子约含385 nmol氨基,纳米粒子呈规则球形,大小均一,单分散性好,平均粒径为(70±6) nm,具有很好的光稳定性.用100 W氙灯在最大发射波长照射90 min后,其荧光强度仅衰减8%;在水溶液中不易发生染料泄露,连续超声1 h后,染料泄露少于0.05%.以合成的纳米粒子作荧光探针标记链霉亲和素后应用于蛋白质微阵列芯片检测HIV p24抗原.结果显示,荧光强度与p24浓度呈良好的正相关性,检出限为3.1 μg/L.本纳米粒子作为新型荧光探针,可应用于高灵敏检测的蛋白质微阵列芯片及荧光免疫分析等系统.  相似文献   

8.
本工作将罗丹明B分子通过共价结合的方式成功地包裹在二氧化硅纳米粒子中,制备的纳米粒子荧光强度和罗丹明B分子相比提高了1000倍.对此硅纳米荧光粒子进一步进行了链亲和素修饰,成功制备了可特异性结合生物素修饰蛋白的纳米荧光检测探针.以反相蛋白质芯片检测为模式,研究了此探针对微量蛋白的检测性能.实验中将不同微量浓度的人IgG固定于醛基修饰玻璃片表面,并加入生物素标记的抗人IgG,结果显示在800fg~100pg含量的微量蛋白检测中此纳米荧光探针具有良好的线性关系,最小蛋白检测量可达100fg.与商品化亲和素偶联cy3荧光探针对比分析发现,本方法制备的荧光探针对蛋白的检测灵敏度可提高8倍,且具有成本低,生物修饰简单等优点.  相似文献   

9.
利用荧光素(Fluorescein)对罗丹明6G(Rhodamine 6G)进行修饰,得到荧光分子探针R6G-Flu杂化物.此探针可特异性识别Al3+,检出限可低至10-8 mol/L级;向含有探针分子的溶液中加入Al3+后,溶液的颜色由无色变为粉色,并且在紫外灯下发出绿色荧光,可实现肉眼对10 μmol/L Al3+的定性检测.考察了不同pH值下R6G-Flu的荧光性质. 结果表明,此探针还可用于酸性范围(pH 3.00~6.00)和碱性范围(pH 8.00~10.50)内pH值的精确检测.实验结果表明,R6G-Flu是一种可用于Al3+和pH值检测的双功能荧光分子探针.  相似文献   

10.
生物体内存在的酶屏障是功能性多肽和寡核苷酸成药的重要瓶颈.以镜像噬菌体展示技术(mirror-image phage display)和镜像适配体筛选技术(Spiegelmer technology)为代表的镜像配基筛选技术能有效地克服这一屏障,获得对靶点具有特异识别能力且在生理条件下高度稳定的D型多肽和L型寡核苷酸配基,有望成为多肽或寡核苷酸类特异性药物研发的有利工具.本文主要综述镜像配基筛选技术的原理及其在药学领域的研究进展.  相似文献   

11.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

12.
We have developed a sensitive gold nanoparticle (AuNP)-based inductively coupled plasma mass spectrometry (ICP-MS) amplification and magnetic separation method for the detection of oligonucleotide sequences. The assay relies on (i) the sandwich-type binding of two designed probe sequences that specifically recognize the target oligonucleotide sequences, (ii) magnetic bead separation, and (iii) AuNP-based ICP-MS amplification detection. To enhance the analytical signal and minimize the background signal resulting from nonspecific binding, we performed a series of experiments to evaluate the effects of various parameters (the concentration of the capture probe; the time required for hybridization; the number of washings required to eliminate nonspecific binding) on the oligonucleotide detection. Under the optimized conditions, the detection limit was 80zmol (corresponding to 1.6fM of the target sequence in a sample volume of 50μL). Moreover, it employs a shorter hybridization step and ICP-MS, this procedure is relatively simple and rapid (ca. 1.5h). Based on the analytical results obtained using complementary and mismatched sequences, our method exhibits good performance in distinguishing complementary and random oligonucleotides. Compared with the "gold standard" methodology (plaque assay) for the quantification of dengue virus, our method has the capability to allow early detection of dengue virus in complicated and small-volume samples, with high specificity, good analytical sensitivity, and superior time-effectiveness.  相似文献   

13.
14.
One way to increase the sensitivity of DNA diagnostic assays developed on microarrays is to improve the solid phase that allows the extraction of the target from a biological sample, before detection. Two parameters are influencing the performances of this capture step: (i) the specific surface area being offered for the capture and (ii) the number and the accessibility of oligonucleotide probes immobilized on the surface. In this context, we have developed an attractive approach which fulfills these two points. Our strategy was to elaborate a new material of high specific surface area, suitable to serve as support for both solid-phase oligonucleotide synthesis and in vitro diagnostic assay. This material has consisted of aggregates of colloidal amino-silica nanoparticles covalently linked by poly(ethylene oxide) (PEO) arms. The aggregation of amino-silica particles in the presence of reactive bis-isocyanate PEO was achieved in a controlled manner. The aggregate size and structure were examined by microscopy. The specific surface area of this material was measured by nitrogen adsorption technique. The composition of aggregate was studied by thermogravimetry and X-ray photoelectron spectroscopy. Then, this material has been successfully used as support for oligonucleotide synthesis of high yield and purity. The resulting system will be further evaluated in a diagnostic assay on a microarray.  相似文献   

15.
A novel base-mismatched oligonucleotide assay method based on label-free electrochemical biosensor was developed, in which the L-cysteine (Cys)-dihydroartemisinin (DHA) complex was used as a new electroactive indicator. In DNA sensor, Cys-DHA complex was initially formed on electrode surface by cathodic scanning, and target oligonucleotide was conjugated with Cys-terminated DHA indicator through electrostatic interaction under optimal pH. The subsequent sequence assay was responsive to hybridization recognition, which target oligonucleotide was captured by the surface-anchored DNA/Cys-DHA probe. The electrochemical signals of biosensor before and after hybridization were compared basing the measurements of semi-derivative linear scan voltammetry (SDLSV) and electrochemical impedance spectroscopy (EIS). On the basis of signal amplification of electroactive indicator and specific recognition of DNA probe, five target oligonucleotides with different mismatched bases were assayed, and a detection limit reached 0.3 nM. Furthermore, atomic force microscopy (AFM) was used to visually characterize specific recognition spots of biosensor at nanoscale. This study demonstrated a new electroactive molecule-based, biomolecule-involved electroactive indicator and its application in recognition and detection of complementary and base-mismatched oligonucleotide.  相似文献   

16.
Colloidal gold nanoparticles were conjugated with oligonucleotides to create biorecognition nanomodules. The efficiency of conjugation was determined by fluorescence using a FITC-labelled thiolated model probe and by enzyme-linked nanoparticle assay (ELINA) using a digoxigenin-labelled thiolated model probe. The thermal stability of the conjugation was determined by displacement and fluorescence measurement of the FITC probe. Functionality for hybridisation was determined by enzyme-linked oligonucleotide assay (ELONA). It was found that the equilibrium oligonucleotide surface coverage reached 37% of the total nanoparticle area. These results could be verified by ELINA. Under hybridisation conditions that allowed the detection of 4-point mutations on a target 19-mer sequence (1 h at 65 °C), it was found that the biofunctionalised nanomodules lost between 10 and 30% of the conjugated biorecognition molecules.  相似文献   

17.
To accomplish the selective labeling of a specific protein in complicated biological systems, a peptide tag incorporated into the protein and a complementary small molecular probe are required. Although a variety of peptide tag/probe pairs have been developed as molecular tools for protein analyses, the availability of pairs suitable for real-time imaging of proteins is still limited. We now report a new peptide tag/artificial probe pair composed of a genetically encodable oligo-aspartate sequence (D4 tag, (D4)n, n = 1-3) and the corresponding multinuclear Zn(II) complexes (Zn(II)-DpaTyrs). The strong binding affinity of the Zn(II)-DpaTyr probes with the D4 tag was a result of the multiple coordination bonds and the multivalent effect. It was measured quantitatively by isothermal titration calorimetry. The high affinity between the tag and the probe, indispensable for the selective protein labeling, enabled the pair to be used for the labeling and fluorescence imaging of a membrane-bound receptor protein tethering a triply repeated D4 tag ((D4)3) in an intact cell configuration without significantly affecting the receptor signal transduction.  相似文献   

18.
Loop-mediated isothermal amplification in conjunction with enzyme-linked immunosorbent assay (LAMP-ELISA) provides a sensitive, specific and cost-effective method for detection of etiological causes of infections. The present study developed a reliable LAMP-ELISA diagnostic kit for identification of Salmonella serogroup D strains and evaluated its potential use in the detection of Salmonella serovars Enteritidis and Typhi. The LAMP-ELISA assay used a serogroup D/A-specific primer set to amplify a region of the prt gene, followed by hybridization of the digoxigenin-labeled products to a highly specific oligonucleotide probe for exact identification of serogroup D serovars. Among the bacteria tested, a positive reaction was only observed for strains belong to Salmonella serogroup D. The detection limit of the LAMP-ELISA assay was 4 CFU per tube, which was lower than PCR-ELISA assay with the same target gene (50 CFU per tube). Finally, the technique was successfully applied to an artificially contaminated meat sample with a detection limit 103 CFU mL−1, which was 10 times more sensitive than PCR-ELISA. Overall, the LAMP-ELISA assay could be used as a sensitive alternative method to PCR-ELISA for the specific detection of Salmonella serogroup D serovars in routine food microbiology or clinical laboratories worldwide.  相似文献   

19.
Human DNA is exposed to a variety of endogenous and environmental agents that may induce a wide range of damage. The critical role of DNA damage in cancer development makes it essential to develop highly sensitive and specific assays for DNA lesions. We describe here ultrasensitive assays for DNA damage, which incorporate immuno-affinity with capillary electrophoresis (CE) separation and laser induced fluorescence (LIF) detection. Both competitive and non-competitive assays using CE/LIF were developed for the determination of DNA adducts of benzo[a]pyrene diol epoxide (BPDE). A fluorescently labeled oligonucleotide containing a single BPDE adduct was synthesized and used as a fluorescent probe for competitive assay. Binding between this synthetic oligonucleotide and a monoclonal antibody (MAb) showed both 1:1 and 1:2 complexes between the MAb and the oligonucleotide. The 1:1 and 1:2 complexes were separated by CE and detected with LIF, revealing binding stoichiometry information consistent with the bidentate nature of the immunoglobulin G antibody. For non-competitive assay, a fluorescently labeled secondary antibody fragment F(ab′)2 was used as an affinity probe to recognize a primary antibody that was specific for the BPDE-DNA adducts. The ternary complex of BPDE-DNA adducts with the bound antibodies was separated from the unbound antibodies using CE and detected with LIF for quantitation of the DNA adducts. The assay was used for the determination of trace levels of BPDE-DNA adducts in human cells. Analysis of cellular DNA from A549 human lung carcinoma cells that were incubated with low doses of BPDE (32 nM–1 μM) showed a clear dose–response relationship. BPDE is a potent environmental carcinogen, and the ultrasensitive assays for BPDE-DNA adducts are potentially useful for monitoring human exposure to this carcinogen and for studying cellular repair of DNA damage.  相似文献   

20.
Guven B  Boyacı İH  Tamer U  Çalık P 《The Analyst》2012,137(1):202-208
In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号