首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Proteins play a central role in all domains of life, and precise regulation of their activity is essential for understanding the related biological processes and therapeutic functions. Nucleic acid aptamers, the molecular recognition components derived from systematic evolution of ligands by exponential enrichment(SELEX), can specifically identify proteins with antibody-like recognition characteristics and help to regulate their activity. This minireview covers the SELEX-based selection of protein-binding aptamers, membrane protein analytical techniques based on aptamer-mediated target recognition, aptamer-mediated functional regulation of proteins, including membrane receptors and non-membrane proteins(thrombin as a model), as well as the potential challenges and prospects regarding aptamer-mediated protein manipulation, aiming to supply some useful information for researchers in this field.  相似文献   

2.
Aptamers are valuable tools for studying numerous aspects of biological processes, opening up new experimental opportunities to analyse the function of a wide range of cellular molecules. Functional RNA molecules can be rapidly selected in vitro from complex combinatorial mixtures of different sequences. Recently, it was shown that in vitro selection processes can be automated: the first generation selection robots will soon mean aptamers for several targets can be isolated in parallel within days rather than weeks. Aptamers not only exhibit highly specific molecular recognition properties but are also able to modulate the function of their cognate targets in a highly specific manner by agonistic or antagonistic mechanisms. These properties prompted the development of novel technologies to exploit the use of aptamers to modulate distinct functions of biological targets. Recent controlled expression of aptamers inside cells demonstrated their impressive potential as rapidly generated intracellular inhibitors of biomolecules. Intracellularly applied aptamers are also called 'intramers'. Here we discuss recent developments and strategies for intramer-based technologies that have the potential to greatly facilitate characterisation of unknown protein functions in the context of their natural expression status in vivo. Thus, intramer-based technologies offer many promising applications in functional genomics, proteomics and drug discovery.  相似文献   

3.
Nucleic acid aptamers have been shown many unique applications as excellent probes in molecular recognition. However, few examples are reported which show that aptamers can be internalized inside living cells for aptamer functional studies and for targeted intracellular delivery. This is mainly due to the limited number of aptamers available for cell-specific recognition, and the lack of research on their extra- and intracellular functions. One of the major difficulties in aptamers' in vivo application is that most of aptamers, unlike small molecules, cannot be directly taken up by cells without external assistance. In this work, we have studied a newly developed and cell-specific DNA aptamer, sgc8. This aptamer has been selected through a novel cell selection process (cell-SELEX), in which whole intact cells are used as targets while another related cell line is used as a negative control. The cell-SELEX enables generation of multiple aptamers for molecular recognition of the target cells and has significant advantages in discovering cell surface binding molecules for the selected aptamers. We have studied the cellular internalization of one of the selected aptamers. Our results show that sgc8 is internalized efficiently and specifically to the lymphoblastic leukemia cells. The internalized sgc8 aptamers are located inside the endosome. Comparison studies are done with the antibody for the binding protein of sgc8, PTK7 (Human protein tyrosine kinase-7) on cell surface. We also studied the internalization kinetics of both the aptamer and the antibody for the same protein on the living cell surface. We have further evaluated the effects of sgc8 on cell viability, and no cytotoxicity is observed. This study indicates that sgc8 is a promising agent for cell-type specific intracellular delivery.  相似文献   

4.
稀土上转换纳米材料可以吸收近红外光并发射出可见光或紫外光,在生物传感领域得到了广泛研究。核酸适配体能高特异性和高亲和性地与靶标物结合,被广泛应用于生物传感、疾病诊断等领域。将稀土上转换纳米材料与核酸适配体结合构建的检测体系,可实现对目标物灵敏、高选择性的检测。本文介绍了近几年核酸适配体功能化的稀土上转换纳米材料在生物小分子、蛋白质、核酸、病原微生物、细胞等方面的应用,并展望了其在分析检测领域的发展前景。  相似文献   

5.
核酸适配体是利用体外筛选技术,即指数富集的配体系统进化技术(SELEX),从核酸分子文库中得到的寡核苷酸片段。其与靶标物有很高的特异性和亲和力,将适配体作为识别单元的生物传感研究以及适配体偶联成像试剂的生物体内外成像研究在临床诊断中有很大的应用前景,此外,适配体靶向癌细胞或组织的治疗方法相比传统化学治疗副作用更小,在临床上也有极大的应用前景。本文综述了适配体目前在癌症诊断和靶向治疗两个方面的研究进展,并分析现阶段存在的问题以及面临的挑战。  相似文献   

6.
细胞通过化学信号、 电子交换和直接接触等方式交换彼此之间的物质和信息, 以调节生命体的生长发育. 因此, 细胞间的相互作用研究与调控在细胞功能的机制研究和疾病的诊断及治疗等领域具有非常重要的意义. DNA纳米结构具有易合成、 易修饰、 可编程性设计及生物安全性高等优点, 有望实现操作简单、 精确可调、 智能响应的细胞间相互作用调控, 受到了广泛关注. 本文综述了寡核苷酸链杂交、 受体-配体结合和核酸适体靶向识别等基于DNA纳米结构的细胞组装策略, 总结了pH调控、 金属离子调控和DNA链激活等细胞间相互作用的调控手段, 并重点介绍了其在细胞间作用力的测量和成像、 体外组织模型的构建、 细胞间的通讯交流和细胞免疫治疗等领域的应用. 最后对该领域进行了总结和展望, 希望为相关研究提供有益参考.  相似文献   

7.
We report a novel label-free method for the investigation of the adaptive recognition of small molecules by nucleic acid aptamers using capillary electrophoresis analysis. Cocaine and argininamide were chosen as model molecules, and the two corresponding DNA aptamers were used. These single-strand DNAs folded into their specific secondary structures, which were mainly responsible for the binding of the target molecules with high affinity and specificity. For molecular recognition, the nucleic acid structures then underwent additional conformational changes, while keeping the target molecules stabilized by intermolecular hydrogen bonds. The intrinsic chemical and physical properties of the target molecules enabled them to act as indicators for adaptive binding. Thus any labeling or modification of the aptamers or target molecules were made obsolete. This label-free method for aptamer-based molecular recognition was also successfully applied to biological fluids and therefore indicates that this approach is a promising tool for bioanalysis.  相似文献   

8.
The cell membrane is a biological interface consisting of phospholipid bilayer, saccharides and proteins that maintains a stable metabolic intracellular environment as well as regulating and controlling the exchange of substances inside and outside the cell. Cell membranes provide a highly complex biological surface carrying a variety of essential surfaces ligands and receptors for cells to receive various stimuli of external signals, thereby inducing corresponding cell responses regulating the life activities of the cell. These surface receptors can be manipulated via cell surface modification to regulate cellular functions and behaviors Thus, cell surface modification has attracted considerable attention due to its significance in cell fate control, cell engineering and cell therapy. In this minireview, we describe the recent developments and advances of cell surface modification, and summarize the main modification methods with corresponding functions and applications. Finally, the prospect for the future development of the modification of the living cell membrane is discussed.  相似文献   

9.
RNA plays a crucial role in cellular biology as a carrier of genetic information. However, beyond this passive role, RNA has been shown to regulate various cellular processes in a form that is not translated into protein. Non-coding RNA (ncRNA) has been shown to be important in gene regulation, and its aberrant activity has been associated with several disease states. As such, ncRNAs represent a novel target for small molecule regulation and recently, significant advances have been made towards elucidating small molecule regulators of ncRNAs. Herein, we provide an overview of miRNA, siRNA, RNA aptamers, riboswitches, and ribozymes, within the context of recent findings regarding the exogenous regulation of these ncRNAs by small molecules. The development of these small molecule tools has far-reaching applications in the advancement of molecular therapeutics.  相似文献   

10.
Aptamers as analytical reagents   总被引:7,自引:0,他引:7  
Clark SL  Remcho VT 《Electrophoresis》2002,23(9):1335-1340
Many important analytical methods are based on molecular recognition. Aptamers are oligonucleotides that exhibit molecular recognition; they are capable of specifically binding a target molecule, and have exhibited affinity for several classes of molecules. The use of aptamers as tools in analytical chemistry is on the rise due to the development of the "systematic evolution of ligands by exponential enrichment" (SELEX) procedure. This technique allows high-affinity aptamers to be isolated and amplified when starting from a large pool of oligonucleotide sequences. These molecules have been used in flow cytometry, biosensors, affinity probe electrophoresis, capillary electrochromatography, and affinity chromatography. In this paper, we will discuss applications of aptamers which have led to the development of aptamers as chromatographic stationary phases and applications of these stationary phases; and look towards future work which may benefit from the use of aptamers as stationary phases.  相似文献   

11.
Research into paper-based sensors or functional materials that can perform analytical functions with active recognition capabilities is rapidly expanding, and significant research effort has been made into the design and fabrication of bioactive paper at the biosensor level to detect potential health hazards. A key step in the fabrication of bioactive paper is the design of the experimental and operational procedures for the immobilization of biomolecules such as antibodies, enzymes, phages, cells, proteins, synthetic polymers and DNA aptamers on a suitably prepared paper membrane. The immobilization methods are concisely categorized into physical absorption, bioactive ink entrapment, bioaffinity attachment and covalent chemical bonding immobilization. Each method has individual immobilization characteristics. Although every biomolecule–paper combination has to be optimized before use, the bioactive ink entrapment method is the most commonly used approach owing to its general applicability and biocompatibility. Currently, there are four common applications of bioactive paper: (1) paper-based bioassay or paper-based analytical devices for sample conditioning; (2) counterfeiting and countertempering in the packaging and construction industries; (3) pathogen detection for food and water quality monitoring; and (4) deactivation of pathogenic bacteria using antimicrobial paper. This article reviews and compares the different biomolecule immobilization techniques and discusses current trends. Current, emerging and future applications of bioactive paper are also discussed.  相似文献   

12.
The recognition of cellular nucleic acids by synthetic oligonucleotides is a versatile strategy for regulating biological processes. The vast majority of published studies have focused on antisense oligonucleotides that target mRNA, but it is also possible to design antigene oligonucleotides that are complementary to chromosomal DNA. Antigene oligomers could be used to inhibit the expression of any gene or analyze promoter structure and the mechanisms governing gene regulation. Other potential applications of antigene oligomers include activation of expression of chosen genes or the introduction of mutations to correct genetic disease. Peptide nucleic acid (PNA) is a nonionic DNA/RNA mimic that possesses outstanding potential for recognition of duplex DNA. Here we describe properties of PNAs and the challenges for their development as robust antigene agents.  相似文献   

13.
Noninvasive and nondestructive techniques for monitoring and manipulating cells or biomolecules are essential for understanding biological processes. Optical methodologies have been used for the noninvasive and nondestructive monitoring of intracellular molecules and manipulation of cellular activities to elucidate the localization and interactions of these biomolecules. Since the pioneering work of Ashkin, optical trapping has been used to study cellular elasticity and mechanical characteristics of intracellular molecules. In recent years, there has been a substantial amount of research on the optical manipulation of nanometer-sized objects, including the manipulation of the assembly of nanomaterials and the enhancement of optical forces with optical resonance effects. In the study of biomolecular manipulation by optical forces, the functions and roles of biomolecules have been clarified by analyzing the changes in cellular functions induced by manipulation. In this review, we focus on recent studies on optical trapping for the manipulation of living cells or biomolecules and introduce techniques for the manipulation of cellular functions using optical forces.  相似文献   

14.
Molecular assembly offers a promising strategy to construct active systems by using biomolecules as building blocks. Such assembled systems simulate or regulate important biological activities and show great promise in wide bioapplications. In this short review, we focus on the recent progress in ATP-involved active self-assembled systems. ATP-generated active systems are constructed with hierarchical structures via molecular assembly to produce ATP by using various external influences to generate proton gradient. Further, we highlight present active supermolecular systems driven by ATP as chemical fuel. Finally, we discuss the key challenges and perspectives in the future research.  相似文献   

15.
Due to their high specificity and affinity towards various targets,along with other unique advantages such as stability and low cost,aptamers are widely applied in analytical techniques.A typical aptamerbased electrochemical biosensor is composed of a aptamer as the biological recognition element and transducer conve rting the biologic interaction into electrical signals for the quantitative measure ment of targets.Improvement of the sensitivity of a biosensor is significantly important in order to achieve the detection of biomolecules with low abundance,and different amplification strategies have been explored.The strategies either employ nanomaterials such as gold nanoparticles to construct electrodes which can trans fer the biological reactions more efficiently,or attempt to obtain enha nced signal through multi-labeled carriers or utilize enzyme mimics to catalyze redox cycling.This review discusses recent advances in signal amplification methods and their applications.Critical assessment of each method is also considered.  相似文献   

16.
Chemotherapy strategies thus far reported can result in both side effects and drug resistance. To address both of these issues at the cellular level, we report a molecular engineering strategy, which employs polymeric aptamers to induce selective cytotoxicity inside target cells. The polymeric aptamers, composed of both multiple cell-based aptamers and a high ratio of dye-labeled short DNA, exploit the target recognition capability of the aptamer, enhanced cell internalization via multivalent effects, and cellular disruption by the polymeric conjugate. Importantly, the polymer backbone built into the conjugate is cytotoxic only inside cells. As a result, selective cytotoxicity is achieved equally in both normal cancer cells and drug-resistant cells. Control assays have confirmed the nontoxicity of the aptamer itself, but they have also shown that the physical properties of the polymer backbone contribute to target cell cytotoxicity. Therefore, our approach may shed new light on drug design and drug delivery.  相似文献   

17.
Monovalent aptamers can deliver drugs to target cells by specific recognition. However, different cancer subtypes are distinguished by heterogeneous biomarkers and one single aptamer is unable to recognize all clinical samples from different patients with even the same type of cancers. To address heterogeneity among cancer subtypes for targeted drug delivery, as a model, we developed a drug carrier with a broader recognition range of cancer subtypes. This carrier, sgc8c‐sgd5a (SD), was self‐assembled from two modified monovalent aptamers. It showed bispecific recognition abilities to target cells in cell mixtures; thus broadening the recognition capabilities of its parent aptamers. The self‐assembly of SD simultaneously formed multiple drug loading sites for the anticancer drug doxorubicin (Dox). The Dox‐loaded SD (SD–Dox) also showed bispecific abilities for target cell binding and drug delivery. Most importantly, SD–Dox induced bispecific cytotoxicity in target cells in cell mixtures. Therefore, by broadening the otherwise limited recognition capabilities of monovalent aptamers, bispecific aptamer‐based drug carriers would facilitate aptamer applications for clinically heterogeneous cancer subtypes that respond to the same cancer therapy.  相似文献   

18.
Based on the natural functions and chemical characteristics of nucleic acids, a variety of novel synthetic drugs and tools to explore biological systems have become available in recent years. To date, a great number of antisense oligonucleotides, RNA interference-based tools, CpG?containing oligonucleotides, catalytic oligonucleotides, decoys and aptamers has been produced synthetically and applied successfully for understanding and manipulating biological processes and in clinical trials to treat a variety of diseases. Their versatility and potency make them equally suited candidates for fighting viral infections. Here, we describe the different types of nucleic acid-based antivirals, their mechanism of action, their advantages and limitations, and their future prospects.  相似文献   

19.
A surface‐assisted laser desorption/ionization time‐of‐flight mass spectrometric (SALDI‐TOF MS) method was developed for the analysis of small biomolecules by using functional single‐walled carbon nanohorns (SWNHs) as matrix. The functional SWNHs could transfer energy to the analyte under laser irradiation for accelerating its desorption and ionization, which led to low matrix effect, avoided fragmentation of the analyte, and provided high salt tolerance. Biomolecules including amino acids, peptides, and fatty acids could successfully be analyzed with about 3‐ and 5‐fold higher signals than those obtained using conventional matrix. By integrating the advantages of SWNHs and the recognition ability of aptamers, a selective approach was proposed for simultaneous capture, enrichment, ionization, and MS detection of adenosine triphosphate (ATP). This method showed a greatly improved detection limit (1.0 μM ) for the analysis of ATP in complex biological samples. This newly designed protocol not only opened a new application of SWNHs, but also offered a new technique for selective MS analysis of biomolecules based on aptamer recognition systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号