首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
SiC晶体PVT生长系统的流体力学模型及其有限元分析   总被引:7,自引:3,他引:4  
本文根据SiC晶体PVT生长炉的实际提出了生长系统温度场计算的流体力学模型,采用有限元法分析了生长腔内的热传导、辐射和对流对生长腔内和生长晶体中温度空间分布的影响.通过对生长腔内及生长晶体中温度瞬态和稳态分布的分析,得出在加热的初始阶段腔内气体对流对坩埚内的温度分布有较大影响,在系统热平衡后辐射对腔内温度分布起决定作用的结论.  相似文献   

2.
碳化硅(SiC)电子器件的性能和成本受衬底质量影响,因此生长大直径高品质SiC单晶意义重大。物理气相传输(PVT)法是一种常用的生长方法,但其主要面临热场设计与气流控制问题。本工作对电阻加热PVT法生长150 mm SiC单晶完整过程开展数值仿真研究,建立描述SiC原料热解和再结晶及其多孔结构演变、热-质输运、晶体形貌变化的数理模型,用数值模拟手段研究晶体生长、原料演变与热场变化等过程间的耦合关系。结果显示:原料区侧面高温导致气流不均匀,晶面呈“W”形,原料区底部高温得到均匀气流和微凸晶面;长晶界面通过径向温度变化调节气相组分平衡压力,使晶面生长成等温线形状;晶体生长速率与原料温度、剩余原料量呈正相关。模拟结果与已报道实验结果吻合,对优化生长SiC单晶有指导意义。  相似文献   

3.
SiC单晶生长热力学和动力学的研究   总被引:3,自引:2,他引:1  
升华法生长大直径碳化硅(SiC)单晶一直是近年来国内外研究的重点,本文对Si-C系中的Si,Si2,Si3,C,C2,C3,C4,C5,SiC,Si2C,SiC2等气相物种的热力学平衡过程进行了研究,发现SiC生长体系中的主要物种为Si,Si2C,SiC2.生长初期Si的分压较高,从而SiC生长为富硅生长模式.对外加气体进行研究发现,氩气为最好的外加气体,它既可以有效地抑制Si物质流传输,又可以减缓扩散系数随温度升高而递减的趋势.建立了简单一维传输模型,对三个主要物种的动力学输运过程进行了研究,计算得到了两个温度梯度下的主要物种的物质流密度.  相似文献   

4.
研究了ZnO-C体系化学气相法生长ZnO单晶的Zn、CO、O2、CO2、ZnO气体热力学平衡过程,计算发现主要气相物种为Zn,CO.分析了Zn和CO在N2,Ar,He气体中的扩散系数,发现Ar气既可抑制Zn物质流传输,又可减缓Zn扩散系数随温度升高而递减的趋势,是较适宜的外加气体.建立了ZnO单晶气相生长一维传输模型,揭示了Zn的动力学输运过程,获取了三个温度梯度下(氩气背景压力分别为0 atm、0.5 atm、1 atm)Zn的物质流密度,以及温度梯度、背景压力对最大生长速率的影响.  相似文献   

5.
通过低压化学气相沉积方法,在Si(100)衬底上生长了高度择优取向的3C-SiC(100)薄膜.SiC(200)峰的摇摆曲线表明SiC薄膜的结晶质量随着丙烷气体引入温度(Tgi)的升高而增加.选区电子衍射像表明高Tgi下生长的薄膜比低Tgi下生长的薄膜具有更好的取向.典型的SiC薄膜高分辨像中观察到了孪晶和层错.表面场发射扫描电镜像表明随着Tgi的升高,SiC薄膜的表明形貌发生了改变.  相似文献   

6.
大尺寸低缺陷碳化硅(SiC)单晶体是功率器件和射频(RF)器件的重要基础材料,物理气相传输(physical vapor transport, PVT)法是目前生长大尺寸SiC单晶体的主要方法。获得大尺寸高品质晶体的核心是通过调节组分、温度、压力实现气相组分在晶体生长界面均匀定向结晶,同时尽可能减小晶体的热应力。本文对电阻加热式8英寸(1英寸=2.54 cm)碳化硅大尺寸晶体生长系统展开热场设计研究。首先建立描述碳化硅原料受热分解热质输运及其多孔结构演变、系统热输运的物理和数学模型,进而使用数值模拟方法研究加热器位置、加热器功率和辐射孔径对温度分布的影响及其规律,并优化热场结构。数值模拟结果显示,通过优化散热孔形状、保温棉的结构等设计参数,电阻加热式大尺寸晶体生长系统在晶锭厚度变化、多孔介质原料消耗的情况下均能达到较低的晶体横向温度梯度和较高的纵向温度梯度。  相似文献   

7.
径向流动MOCVD输运过程的数值模拟和反应器优化   总被引:2,自引:0,他引:2  
左然  张红  徐谦 《人工晶体学报》2005,34(6):1011-1017
针对三重进口径向流动行星式MOCVD反应器的输运过程进行二维数值模拟研究,探讨有关行星式反应器流道高度和托盘直径能否继续扩大,如何控制基片上方温场和浓度场为最佳分布这样一些本质问题,同时寻找反应器的优化条件.模拟结果发现:(1)通过对反应器形状进行优化,使进口处流道趋向于流线的形状,可以大大地削弱甚至消除由流道扩张引起的涡旋;(2)在影响对流涡旋的几何参数中,反应腔高度起主要作用,而反应腔直径影响较小.对于优化后的反应器,发生对流涡旋的临界高度提高到2~2.5cm,对应的反应器直径增加到40cm;(3)在相同温差、不同衬底温度的条件下,反应器内的流动形态不同.衬底温度高,对流涡旋较弱;衬底温度低,对流涡旋较强.其原因在于气体的粘滞力随温度升高从而抑制了浮升力的作用;(4)衬底上方均匀的流场对应均匀的温场和较高的反应物浓度,热扩散则使TMGa在衬底处的浓度降低.  相似文献   

8.
SiC是新一代射频器件和功率器件的理想材料,电阻式物理气相传输法由于具有温度均匀性,成为生长大尺寸SiC单晶的有效方法。近年来,多孔石墨等的使用提高了SiC晶体的质量和产量,而关于其机理的研究却相对较少。本文使用数值模拟的方法系统研究了多孔石墨对SiC晶体生长的影响,并进行了晶体生长验证。模拟结果表明:多孔石墨的使用提高了原料区域的温度及温度均匀性,增大了坩埚内轴向温差,对减弱原料表层的重结晶也具有一定作用;在生长腔内,多孔石墨改善了物质流动在整个生长过程中的稳定性,提高了生长区域的C/Si比,有助于减小相变发生概率,同时多孔石墨对晶体界面也起到改善作用。晶体生长结果实际验证了多孔石墨在提高传质均匀性、降低相变发生率和改善晶体外形上的作用。本文结果对于理解多孔石墨的作用机理以及改善SiC晶体生长条件具有实际意义。  相似文献   

9.
以氢气和四甲基硅烷作为先驱气体,采用微波等离子体化学气相沉积法,不同沉积压力条件下、在YG6硬质合金表面制备了的SiC涂层.利用SEM、EDS、XRD、划痕测试法对SiC涂层的表面形貌、相组成和附着力进行了分析.实验结果表明,在较低的压力下,SiC涂层为胞状的纳米团聚物,且胞团的尺度随压力的升高而变小;随着压力的升高,胞状SiC开始并最终全部转变为片层状SiC,并在此过程中伴随着颗粒状Co2Si的形成与长大;随着压力的继续升高,片层状SiC开始转变为须状SiC.胞状SiC向片层状SiC的转变会使涂层致密度提高,而涂层对硬质合金衬底的附着力也会随之增强;Co催化作用的上升引起的片层状SiC向须状SiC的转变会导致SiC涂层的附着力明显降低.以具有片层状特征的SiC作为过渡层,可在未经去Co酸蚀预处理的硬质合金衬底上制备出具有较好附着力的金刚石涂层.  相似文献   

10.
本文提出一个用PVT法生长SiC晶体的坩埚的新颖设计.分析了生长腔中有无锥形档板对腔内及籽晶温度场的影响;比较了档板取不同厚度时SiC粉源升华面和籽晶表面的温度分布.得出了在腔内增设档板后晶体生长面的温度更趋均匀的结论;获取了随着档板厚度的增加,腔内的轴向温度梯度随之增加,但同时晶体生长面的温度也会降低的设计原则.根据计算结果,选取档板厚度等于2mm为优化参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号