首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
结构动力方程的增维精细积分法   总被引:29,自引:2,他引:27  
对线性定常结构动力系统提出的精细积分方法,能够得到在数值上逼近于精确解的结果,但对于非齐次动力方程涉及到矩阵求逆的困难。提出采用增维的办法,将非齐次动力方程转化为齐次动力方程,在实施精细积分过程中不必进行矩阵求逆,这种方法对于程序实现和提高数值稳定性十分有利,而且在大型问题中计算效率较高,从而改进了精细积分方法的应用,数值例题显示了本文方法的有效性。  相似文献   

2.
提出一种针对非线性动力方程的改进精细积分方法。该方法是在时间步长内采用分段的三次样条函数拟合非齐次项,保持高精度拟合的同时避免了求导运算和高次多项式插值带来的Runge现象。通过引入4×2个变量将动力方程增加四维转化为齐次方程,并建立相应的通解格式,避免了状态空间下系统矩阵求逆。将指数矩阵分为四个子模块,利用各模块的特点分别进行理论推导及基于精细积分法进行分步、分块计算得到相应的理论解和高精度数值解,无需反复计算整个指数矩阵,提高了解算效率。针对含未知状态量的非齐次项,引入预测-校正的方法进行迭代求解。数值计算结果表明了本文方法的有效性。  相似文献   

3.
基于Hamilton体系下的精细时程积分方法,通过对载荷项进行离散,应用中值法使载荷项在时间步长内为常值,从而将非齐次动力方程转化为齐次动力方程,避免了矩阵的求逆运算;基于积分区间逐次半分的思想实现了任意时间步长的自适应求积。数值算例结果表明:在同等时间步长的非齐次系统中,精细时程积分的最大误差为中心差分法的2.8%,为Newmark法的2.2%,最大求解误差仅为0.029%。这充分说明了本文的离散精细时程积分的自适应求积算法具有很好的收敛性。  相似文献   

4.
一种广义精细积分法   总被引:16,自引:1,他引:16  
提出了求解非齐次动力方程特解的一种精细数值积分法,该方法与通解 精细积分法具有相同精度. 首先选取一个积分形式的非齐次方程特解,将积分区域划分为 2$^{N}$份,并对之进行精细的数值积分;然后针对载荷为多项式、指数函数及三角函数的情 况,将积分求和转化为一个递推过程,按此只需$n$次矩阵乘法就能计算出积分和,从而得到 非齐次方程的特解. 该方法的优点是能与通解的精细积分过程有机地结合起来,具有极高的 精度和效率,同时还具有较广泛的适用范围. 算例结果证明了该方法的有效性.  相似文献   

5.
针对非齐次动力学方程■,结合精细积分法和微分求积法,利用同阶的显式龙格-库塔法对计算过程中待求的v_(k+i/s)(i=1,2,…,s)进行预估,提出了一种避免状态矩阵求逆的高效精细积分单步方法。该方法采用精细积分法计算e~(Ht),而Duhamel积分项采用s级s阶的时域微分求积法,计算格式统一且易于编程,可灵活实现变阶变步长。仿真结果表明,与其他单步法及预估校正-辛时间子域法进行数值比较,该方法具有高精度、高效率及良好的稳定性,在求解大规模动力系统时间响应问题中具有较大的优势。  相似文献   

6.
对线性定常结构动力系统提出的增维精细积分法,能够将非齐次动力方程转化为齐次动力方程,不用对状态矩阵求逆就能方便高效地求解出结构的动力响应。本文在仔细分析增维精细积分法性质的基础上,提出了其适用条件,进一步拓宽了其应用范围,并给出了将荷载项展开成傅里叶级数时,相应增维精细积分法的表达式。同时,在一个时间步长内,通过对非齐次项作线性化假设,成功地将增维精细积分法应用到了非线性动力分析领域。本文方法计算格式统一,易于编程,具有很高的计算效率。数值算例证明了本文方法的有效性。  相似文献   

7.
齐次扩容精细算法   总被引:12,自引:3,他引:9  
钟万勰院士创立的线性定常系统的精细算法HPD具有非常重要的工程实用价值。对于非齐次线性定常系统,钟构造了在一个积分步长内将激励项线性化的处理方法LHPD,Lin^[3]等通过Fourier级数展开和寻找有解析形式的特解的方法,构造了HPD-F算法,这两种算法有一个共同点,即算法的实现需要求解系统矩阵及相关长阵的逆矩阵,数学上,也即隐含要求系统的矩阵及其相关矩阵非奇异,这样,就产生以下两个问题:1.当系统矩阵及其相关矩阵奇异时,如何设计这类动力响应问题的精细格式?2.算法的实现,需要设计高精度的矩阵求逆算法,而矩阵求逆的工作量是奶大的.本文借助齐次扩容技巧,设计了求解非齐次线性定常系统的一类新的精细算法-齐次扩容精细算法HHPD。该算法不涉及矩阵求逆运算,有效地解决 上述两个问题,并且具有设计合理,易于实现等特点,本文最后就几个典型算例,应用齐次扩容精细算法求解,与文献相比,数值结果更为理想。  相似文献   

8.
针对u-p形式的饱和两相介质波动方程,采用精细时程积分方法计算固相位移u,采用向后差分算法求解流体压力p,建立了饱和两相介质动力固结问题时域求解的精细时程积分方法。针对标准算例,对该方法的计算精度进行了校核。开展了该方法相关算法特性的研究,对采用不同数值积分方法计算非齐次波动方程特解项计算精度的差异进行了对比研究,并对采用不同积分点数目的高斯积分法计算特解项条件下计算精度的差异进行了对比研究。研究结果表明,(1)该方法具有良好的计算精度。(2)计算非齐次波动方程特解项的数值积分方法中,梯形积分法的计算精度最差,高斯积分法、辛普生积分法和科茨积分法都具有较好的计算精度。(3)增加高斯积分点数目对于提高计算精度的作用并不显著。  相似文献   

9.
结构动力方程的更新精细积分方法   总被引:26,自引:3,他引:26  
汪梦甫  周锡元 《力学学报》2004,36(2):191-195
将高斯积分方法与精细积分方法中的指数矩阵运算技巧结合起来,建立了精细积分法的更新形式及计算过程,对该更新精细积分方法的稳定性进行了论证与探讨。在实施精细积分过程中不必进行矩阵求逆,整个积分方法的精度取决于所选高斯积分点的数量。这种方法理论上可实现任意高精度,计算效率较高,其稳定性条件极易满足。数值例题也显示了这种方法的有效性。  相似文献   

10.
《力学学报》2012,44(3)
提出应用精细积分算法计算多层地基的动力刚度问题.精细积分是计算层状介质中波传播的高效而精确的数值方法.利用傅里叶积分变换将层状地基的波动方程转换为频率-波数域内的两点边值问题的常微分方程组,运用精细积分方法求解格林函数,最后再将得到的频率-波数域内地基表面的动力刚度矩阵转换到频率-空间域内,进而得到刚性条带基础频率域的动力柔度或刚度矩阵.所建议的精细积分算法,可以避免一般传递矩阵计算中的指数溢出问题,对各种情况有广泛的适应性,计算稳定,在高频段可以保障收敛性,并能达到较高的计算精度.  相似文献   

11.
提出将Pade逼近与精细积分方法中的指数矩阵运算技巧结合起来,建立了精细积分法的更新形式及计算过程,对该更新精细积分方法的稳定性进行了论证与探讨.结果表明,该更新精细积分方法是无条件稳定的,整个积分方法的精度取决于所取Pade逼近的阶数与高斯积分点的数量.数值例题也显示了该方法的高效率及其可行性.  相似文献   

12.
非齐次动力方程Duhamel项的精细积分   总被引:13,自引:1,他引:13  
谭述君  钟万勰 《力学学报》2007,39(3):374-381
提出了不需要矩阵求逆运算的求解Duhamel积分项的精细积分方法.通过将精细积分法的关键思想--加法定理和增量存储--直接应用于Duhamel积分响应矩阵的求解,可给出当非齐次项分别为多项式、正弦/余弦以及指数函数等基本形式时Duhamel积分在计算机上的精确解.特别的,该算法不依赖于系统矩阵(或相关矩阵)的形态.当系统矩阵奇异或接近奇异时,其优越性更为显著.算例验证了该算法的有效性.  相似文献   

13.
结构动力方程的样条精细积分法   总被引:3,自引:2,他引:1  
结合精细积分法和样条函数拟合技术的优点,提出了求解结构动力方程的一种有效方法.首先对非齐次项用三次正规化B样条函数进行拟合,然后利用正规化B样条函数形状相同、仅相差一个平移量的特点,构造了一个高效的特解求解方法.按此方法只需求出一个标准B样条项所对应的特解,然后通过时间坐标的平移并结合叠加原理,即可求出任意时刻的特解值.由于特解计算中采用数值积分的方法,避免了矩阵求逆,因而本方法具有较大的适用范围.算例结果证明了该方法的有效性.  相似文献   

14.
关于动力分析精细积分算法精度的讨论   总被引:9,自引:3,他引:6  
张洪武 《力学学报》2001,33(6):847-852
对动力问题分析的精细积分算法的精度问题进行深入研究,并在此基础上提出对原有的算法的改进策略,改进后的算法可以较好地克服算法精度对积分时间步长的依赖性问题。  相似文献   

15.
常规位移有限元的结构振动方程是n个二阶常微分方程组.采用一般交分原理推导,将结构振动问题引入Hamiltoil体系,将得到2n个一阶常微分方程组.精细积分法宜于处理一阶方程,应用于线性定常结构动力问题求解,可以得到在数值上逼近精确解的结果.对于非齐次动力方程,当结构具有刚体位移时,系统矩阵将出现奇异.本文借鉴全元选大元高斯-约当法求解线性方程组的经验,提出全元选大元法求奇异矩阵零本征解的方法,该方法可以简便快速地寻求奇异矩阵零本征值对应的子空间.利用Hamiltoil体系已有研究成果及Hamilton系统的共轭辛正交归一关系,迅速将零本征值对应的子空间分离出来,通过投影排除奇异部分,然后用精细积分法求得问题的解.数值算例表明,该方法对Hamilton系统奇异问题,处理方便,计算量小,易于实现,同时保持了精细算法的优点.  相似文献   

16.
对线性定常结构动力系统提出的精细积分方法,在数值精度等方面表现出极大优越性,但是当矩阵尺度很大时在数值计算与存储中将产生困难,对此,本文对瞬态热传导方程,根据结构的概念,将结构分为若干个子结构,对各子结构分别进行指数矩阵运算并通过了结构间界面的物理量相联系,从而提高精细积分方法的计算效率。  相似文献   

17.
基于Muszynska密封力模型,建立了迷宫密封转子系统的非线性动力学模型,将精细积分法推广应用于非线性情况,计算了迷宫密封不平衡转子系统的动力学特性,依据Floquet理论讨论其分岔特性。研究表明:在2^N类算法计算指数矩阵基础上提出的精细积分法和传统的数值计算方法相比,其精度高,在分析中通过取不同步长计算对比,表明该方法在某些情况下可以采取较大时间步长,有效提高了计算速度。  相似文献   

18.
大规模动力系统改进的快速精细积分方法   总被引:1,自引:0,他引:1  
提出一种针对大规模动力系统的改进的快速精细积分方法(FPIM)。以精细积分方法为基础,利用大规模动力系统矩阵的稀疏性和动力问题的物理特性,分析了矩阵指数的特殊结构,并基于此给出一种计算大规模动力系统矩阵指数及其动力响应的高效率方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号