首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于对偶变量变分原理,选择积分区间两端位移为独立变量,构造了求解完整约束哈密顿动力系统的高阶保辛算法。首先,利用拉格朗日多项式对作用量中的位移、动量及拉格朗日乘子进行近似;然后,对作用量中不包含约束的积分项采用Gauss积分近似,对作用量中包含约束的积分项采用Lobatto积分近似,从而得到近似作用量;最后,在此近似作用量的基础上,利用对偶变量变分原理,将求解完整约束哈密顿动力系统问题转化为一组非线性方程组的求解。算法具有保辛性和高阶收敛性,能够在位移的插值点处高精度地满足完整约束。算法的收敛阶数及数值性质通过数值算例验证。  相似文献   

2.
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton’s variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and momentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.  相似文献   

3.
拟谱方法和微分求积法是两类重要的无网格法,二者都已在科学和工程计算中获得了广泛应用。采用拉格朗日插值多项式作为二者的试函数,且采用同一种网格点分布,指出了在空间域上,微分求积法是拟谱方法的一种特殊形式。在此基础上,结合二者各自的特点,提出了拟谱-微分求积混合方法用于求解一类双曲电报方程。理论分析和数值测试表明,新方法在空间域上具有谱精度收敛性,在时间域上是A-稳定的,比较适合于求解多维电报方程。  相似文献   

4.
The attitude optimal control problem(OCP) of a two-rigid-body spacecraft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the external torque, a dynamic equation of three-dimensional attitude motion of the system is formulated. The attitude motion planning problem of the coupled-rigid-body spacecraft can be converted to a discrete nonlinear programming(NLP) problem using the Chebyshev-Gauss pseudospectral method(CGPM). Solutions of the NLP problem can be obtained using the sequential quadratic programming(SQP) algorithm. Since the collocation points of the CGPM are Chebyshev-Gauss(CG) points, the integration of cost function can be approximated by the Clenshaw-Curtis quadrature, and the corresponding quadrature weights can be calculated efficiently using the fast Fourier transform(FFT). To improve computational efficiency and numerical stability, the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of state and control variables. Furthermore, numerical float errors of the state differential matrix and barycentric weights can be alleviated using trigonometric identity especially when the number of CG points is large. A simple yet efficient method is used to avoid sensitivity to the initial values for the SQP algorithm using a layered optimization strategy from a feasible solution to an optimal solution. Effectiveness of the proposed algorithm is perfect for attitude motion planning of a two-rigid-body spacecraft coupled by a ball-in-socket joint through numerical simulation.  相似文献   

5.
In this paper, we focus on the applicability of spectral‐type collocation discontinuous Galerkin methods to the steady state numerical solution of the inviscid and viscous Navier–Stokes equations on meshes consisting of curved quadrilateral elements. The solution is approximated with piecewise Lagrange polynomials based on both Legendre–Gauss and Legendre–Gauss–Lobatto interpolation nodes. For the sake of computational efficiency, the interpolation nodes can be used also as quadrature points. In this case, however, the effect of the nonlinearities in the equations and/or curved elements leads to aliasing and/or commutation errors that may result in inaccurate or unstable computations. By a thorough numerical testing on a set of well known test cases available in the literature, it is here shown that the two sets of nodes behave very differently, with a clear advantage of the Legendre–Gauss nodes, which always displayed an accurate and robust behaviour in all the test cases considered.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
梅欢  曾忠  邱周华  姚丽萍  李亮 《计算力学学报》2012,29(5):641-645,674
r=0处的坐标奇异性是求解极坐标下Poisson-型方程的关键。本文提出一种极坐标系下基于Galerkin变分的Legendre谱元方法用于求解圆形区域内的Poisson-型方程,物理区域的径向和周向划分若干单元,计算单元均采用Legendre多项式展开;圆心所在单元的径向使用LGR(Legendre Gauss Radau)积分点,其他单元径向使用LGL(Legendre Gauss Lobatto)积分点,从而避免了极点处1/r坐标奇异性,周向单元均采用LGL积分点。利用区域分解技术,可以避免节点在极点附近聚集;最后求解了多个Dirichlet或Neumann边界条件下的Poisson-型方程算例。数值结果表明,谱元方法具有很高的精度。  相似文献   

7.
The main idea of the structure-preserving method is to preserve the intrinsic geometric properties of the continuous system as much as possible in numerical algorithm design. The geometric constraint in the multi-body systems, one of the difficulties in the numerical methods that are proposed for the multi-body systems, can also be regarded as a geometric property of the multi-body systems. Based on this idea, the symplectic precise integration method is applied in this paper to analyze the kinematics problem of folding and unfolding process of nose undercarriage. The Lagrange governing equation is established for the folding and unfolding process of nose undercarriage with the generalized defined displacements firstly. And then, the constrained Hamiltonian canonical form is derived from the Lagrange governing equation based on the Hamiltonian variational principle. Finally, the symplectic precise integration scheme is used to simulate the kinematics process of nose undercarriage during folding and unfolding described by the constrained Hamiltonian canonical formulation. From the numerical results, it can be concluded that the geometric constraint of the undercarriage system can be preserved well during the numerical simulation on the folding and unfolding process of undercarriage using the symplectic precise integration method.  相似文献   

8.
应变梯度理论自然邻近混合伽辽金法   总被引:1,自引:1,他引:0  
应变梯度理论考虑了位移二阶梯度对应变能密度函数的贡献,在本构关系中引入了与材料微结构特征尺寸相关的参数,可以唯象地解释尺度效应现象。基于约束变分原理,把位移与位移一阶梯度作为独立场变量,使用拉格朗日乘子法引入二者的协调关系,放松对试探函数连续性与完备性的要求,建立了二维及三维问题的应变梯度理论自然邻近混合伽辽金法。通过算例对方法的计算性能进行了考查,结果表明,该方法具有良好的数值精度,能够模拟材料力学性能的尺度效应。  相似文献   

9.
This paper presents an algorithm to obtain numerically stable differentiation matrices for approximating the left- and right-sided Caputo-fractional derivatives. The proposed differentiation matrices named fractional Chebyshev differentiation matrices are obtained using stable recurrence relations at the Chebyshev–Gauss–Lobatto points. These stable recurrence relations overcome previous limitations of the conventional methods such as the size of fractional differentiation matrices due to the exponential growth of round-off errors. Fractional Chebyshev collocation method as a framework for solving fractional differential equations with multi-order Caputo derivatives is also presented. The numerical stability of spectral methods for linear fractional-order differential equations (FDEs) is studied by using the proposed framework. Furthermore, the proposed fractional Chebyshev differentiation matrices obtain the fractional-order derivative of a function with spectral convergence. Therefore, they can be used in various spectral collocation methods to solve a system of linear or nonlinear multi-ordered FDEs. To illustrate the true advantages of the proposed fractional Chebyshev differentiation matrices, the numerical solutions of a linear FDE with a highly oscillatory solution, a stiff nonlinear FDE, and a fractional chaotic system are given. In the first, second, and forth examples, a comparison is made with the solution obtained by the proposed method and the one obtained by the Adams–Bashforth–Moulton method. It is shown the proposed fractional differentiation matrices are highly efficient in solving all the aforementioned examples.  相似文献   

10.
提出了哈密顿动力系统的一个新变分原理,并基于此变分原理构造了四类保辛算法。通过新的变分原理定义修正作用量,然后将位移和动量采用拉格朗日多项式近似,并采用高斯积分对时间近似积分得到近似的修正作用量。在修正作用量的基础上,通过选择时间步两端不同的位移或动量作为独立变量,可构造四种不同类型的保辛算法。  相似文献   

11.
A new algorithm based on spectral element discretizations and flux-corrected transport (FCT) ideas is developed for the solution of discontinuous hyperbolic problems. A conservative formulation is proposed, based on cell averaging and reconstruction procedures, that employs a staggered grid of Gauss–Chebyshev and Gauss–Lobatto–Chebyshev discretizations. In addition, high-order time-differencing schemes, a flux limiter and a general spectral filter are employed to improve the quality of the solution. It is demonstrated through model problems of linear advection and examples of one-dimensional shock formation that the proposed algorithm leads to stable, non-oscillatory solutions of high accuracy away from discontinuities. Typically, spectral or spectral element methods perform very poorly in the presence of even weak discontinuities, although they produce only exponentialy small errors for smooth solutions. Spectral element–FCT methods can provide spectral properties (i.e. minimum dispersion and diffusion errors) as well as great flexibility in the discretization, since a variable number of macroelements or collocation points per element can be employed to accommodate both accuracy and geometric requirements.  相似文献   

12.
透射边界条件在波动谱元模拟中的实现:一维波动   总被引:1,自引:0,他引:1  
邢浩洁  李鸿晶 《力学学报》2017,49(2):367-379
多次透射公式(multi-transmitting formula,MTF)是一种具有普适性的局部人工边界条件,但其在近场波动数值模拟中一般与有限元法结合.由于波动谱元模拟的数值格式与有限元格式有极大的不同,传统的MTF在谱元离散格式中无法直接实现.为了使物理概念清楚、精度可控的多次透射人工边界条件能够适应波动谱元模拟的需求,首先指出多次透射边界与谱元离散格式结合的基本问题,并分析了空间内插和时间内插两种方案的可行性.然后从空间内插角度出发,提出基于拉格朗日多项式插值模式的MTF谱元格式,并采用一种简单内插方法实现高阶MTF.最后通过一维波动数值试验检验这些MTF谱元格式的精度,并讨论其数值稳定性.结果表明:对于一、二阶MTF,几种格式的精度相当;对于三、四阶MTF,基于谱单元位移模式插值的格式精度最高.相反,随着插值多项式阶次的升高,不同MTF格式的稳定临界值逐步降低,但是所有格式均在人工波速大大超过物理波速时才可能发生失稳.  相似文献   

13.
We propose constructive methods for direct numerical integration of one-dimensional singular and hypersingular integro-differential equations for the case in which their solution has an asymptotics of power-law type at the endpoints of the integration interval. The approaches are qualitatively divided into two types, typical of complex and real asymptotics. In the first case, the solution is constructed as an expansion with respect to a finite system of orthogonal polynomials (with the endpoint asymptotics explicitly taken into account), the singular and hypersingular integrals are calculated, the regular (generalized) kernel is replaced by a degenerate kernel of special form, and then the integral containing this kernel is calculated analytically (or by direct numerical computation). The application of the collocation method to the functional equation thus constructed permits obtaining a system of linear algebraic equations for the coefficients of the solution expansion. For the real asymptotics, we develop a direct approach based on the approximation of the unknown function by the Lagrange polynomial (with the endpoint asymptotics taken into account), the use of quadrature formulas of interpolation type, and the construction of a linear algebraic system for the values of the unknown function on a discrete set of points by using the collocation method. We present the results of numerical computations and compare them with the analytic solutions.  相似文献   

14.
A spectral collocation method is developed for solving the three‐dimensional transient Navier–Stokes equations in cylindrical coordinate system. The Chebyshev–Fourier spectral collocation method is used for spatial approximation. A second‐order semi‐implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant–Friedrichs–Lewy (CFL) condition, and is second‐order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in r‐, ? ‐, and z‐directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss–Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss–Lobatto points in radial direction to avoid the axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a thorough investigation is presented into the nonlinear resonant dynamics of geometrically imperfect shear deformable nanobeams subjected to harmonic external excitation force in the transverse direction. To this end, the Gurtin–Murdoch surface elasticity theory together with Reddy’s third-order shear deformation beam theory is utilized to take into account the size-dependent behavior of nanobeams and the effects of transverse shear deformation and rotary inertia, respectively. The kinematic nonlinearity is considered using the von Kármán kinematic hypothesis. The geometric imperfection as a slight curvature is assumed as the mode shape associated with the first vibration mode. The weak form of geometrically nonlinear governing equations of motion is derived using the variational differential quadrature (VDQ) technique and Lagrange equations. Then, a multistep numerical scheme is employed to solve the obtained governing equations in order to study the nonlinear frequency–response and force–response curves of nanobeams. Comprehensive studies into the effects of initial imperfection and boundary condition as well as geometric parameters on the nonlinear dynamic characteristics of imperfect shear deformable nanobeams are carried out through numerical results. Finally, the importance of incorporating the surface stress effects via the Gurtin–Murdoch elasticity theory, is emphasized by comparing the nonlinear dynamic responses of the nanobeams with different thicknesses.  相似文献   

16.
The objective of this paper is to assess the accuracy of low‐order finite volume (FV) methods applied to the v2 ? f turbulence model of Durbin (Theoret. Comput. Fluid Dyn. 1991; 3 :1–13) in the near vicinity of solid walls. We are not (like many others) concerned with the stability of solvers ‐ the topic at hand is simply whether the mathematical properties of the v2 ? f model can be captured by the given, widespread, numerical method. The v2 ? f model is integrated all the way up to solid walls, where steep gradients in turbulence parameters are observed. The full resolution of wall gradients imposes quite high demands on the numerical schemes and it is not evident that common (second order) FV codes can fully cope with such demands. The v2 ? f model is studied in a statistically one‐dimensional, fully developed channel flow where we compare FV schemes with a highly accurate spectral element reference implementation. For the FV method a higher‐order face interpolation scheme, using Lagrange interpolation polynomials up to arbitrary order, is described. It is concluded that a regular second‐order FV scheme cannot give an accurate representation of all model parameters, independent of mesh density. To match the spectral element solution an extended source treatment (we use three‐point Gauss–Lobatto quadrature), as well as a higher‐order discretization of diffusion is required. Furthermore, it is found that the location of the first internal node need to be well within y+=1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
高山  史东华  郭永新 《力学学报》2021,53(6):1712-1719
Hamel场变分积分子是一种研究场论的数值方法, 可以通过使用活动标架规避几何非线性带来的计算复杂度, 同时数值上具有良好的长时间数值表现和保能动量性质. 本文在一维场论框架下, 以几何精确梁为例, 从理论上探究Hamel场变分积分子的保动量性质. 具体内容包括: 利用活动标架法对几何精确梁建立动力学模型, 通过变分原理得到其动力学方程, 利用其动力学方程及Noether定理得到系统动量守恒律; 将几何精确梁模型离散化, 通过变分原理得到其Hamel场变分积分子, 利用Hamel场变分积分子和离散Noether定理得到离散动量守恒律, 并给出离散动量的一阶近似表达式; Hamel场变分积分子可在计算中利用系统对称性消除系统运动带来的非线性问题, 但此框架中离散对流速度、离散对流 应变及位形均不共点, 而这种错位导致离散动量中出现级数项, 本文对几何精确梁的离散动量与连续形式的关系及其应 用进行了讨论, 并通过算例验证了结论. 上述证明方法也同样适用一般经典场论场景下的Hamel场变分积分子. Hamel场变分积分子的动量守恒为进一步研究其保结构性质提供了参考依据.   相似文献   

18.
SPECTRALMETHODFORSEMILINEARPARABOLICINTEGRODIFFERENTIALEQUATIONSLiuXiao-qing(刘小清)WuSheng-chang(吴声昌)(InstituteofAppliedMathema...  相似文献   

19.
Thedifferentialquadraturemethod(DQM)proposedbyR.Bellman[1,2]hasbeensuccessfullyemployedinnumericalcomputationsofproblemsinengineeringandphysicalscience.BecausetheinformationonallgridpointsisusedtofitthederivativesatgridpointsintheDQM,itisenoughtoobta…  相似文献   

20.
等几何分析使用 NURBS 基函数统一表示几何和分析模型, 消除了传统有限元的网格离散误差, 容易构造高阶连续的协调单元. 对于结构分析, 选择合适的几何参数可以得到光滑的应力解, 避免了后置处理的应力磨平. 但是由于 NURBS 基函数不具备插值性, 难以直接施加位移边界条件. 针对这一问题, 提出一种基于 Nitsche 变分原理的边界位移条件“弱”处理方法, 它具有一致稳定的弱形式, 不增加自由度, 方程组对称正定和不会产生病态矩阵等优点. 同时给出方法的稳定性条件, 并通过求解广义特征值问题计算稳定性系数. 最后, 数值算例表明 Nitsche 方法在h细化策略下能获得最优收敛率, 其结果要明显优于在控制顶点处直接施加位移约束.}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号