首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain bursts are often observed during compression tests of single crystal micropillars. In this work, we formulate a new continuum model that accounts for the strain bursts within the framework of crystal plasticity. The strain bursts are separated from the loading stage (nearly elastic loading) by introducing a dimensionless constant in the continuum model, and are detected by load serrations. The boundary conditions in the context of micropillar compression are studied and they are shown to be changing and unpredictable as plastic deformation proceeds. To evaluate the validity of our model, finite element simulations of the uniaxial compression tests on nickel micropillars are performed. Our simulations produce clearly visible strain bursts during the plastic flow and the produced intermittent flows are comparable with the experimental observations. For the bulk crystal, a series of strain bursts is identified in the course of plastic flow, despite an apparently smooth stress–strain response. We also show that the intermittent flow is intensified in the micrometer-scale due to both increasing numbers of the successive strain bursts and increasing amplitude of the strain burst, when the specimen size decreases. Finally, we show that the occurrences of the strain bursts are always associated with negative values of the second-order work.  相似文献   

2.
微压缩实验发现,微小尺度单晶金属柱体在塑性变形过程中会发生显著的应变突变,呈现出特殊的间歇性塑性流动特征。本文以数百纳米直径的单晶Au柱体为研究对象,探讨其在位移加载条件下的间歇性流动行为。首先根据位移加载条件下的塑性变形特征,提出了分析其应变突变的三阶段模型。进一步结合经典晶体塑性理论框架的有限元方法,建立了以二阶功参量为基础的连续塑性力学模型。通过与实验结果相对比发现,新模型能够较好地描述位移加载条件下微小尺度面心立方单晶金属材料的应变突变现象,能够合理预测单晶柱体的特殊变形行为。此外,二阶功准则作为位移加载条件下应变突变现象的判据是有效的。进而使用该理论模型,探讨了微小金属柱体应变突变随机性、尺寸相关性以及率敏感性等问题。  相似文献   

3.
A couple stress crystal plasticity formulation that incorporates interfacial couple stress energy was proposed in terms of the virtual work-rate principle for finite element method. By applying the assumed constitutive models of couple stress at the grain boundary as well as the grain interior, finite element simulations were conducted for various crystal models, with different grain subdivision models to examine how plastic deformation work is affected by grain subdivision from the interfacial couple stress energy effect.Finite element simulation results showed that the amount of predicted plastic deformation work depends on grain subdivision, and that the amount of work can be minimized for a particular grain subdivision. We inferred from the simulation results that actual grain subdivision might correspond to the minimum amount of plastic deformation work and, if this correlation is validated, actual grain subdivision might be predicted based on the interfacial energy incorporated couple stress crystal plasticity.  相似文献   

4.
Multiscale dislocation dynamic simulations are systematically carried out to reveal the dislocation mechanism controlling the confined plasticity in coated micropillar. It is found that the operation of single arm source (SAS) controls the plasticity in coated micropillar and a modified operation stress equation of SAS is built based on the simulation results. The back stress induced by the coating contributes most to the operation stress and is found to linearly depend on the ‘trapped dislocation’ density. This linear relation is verified by comparing with the solution of the current higher-order crystal plasticity theory and is used to determine the material parameters in the continuum back stress model. Furthermore, based on the linear back stress model and considering the stochastic distribution of SAS, a theoretical model is established to predict the upper and lower bound of stress–strain curve in the coated micropillars, which agrees well with that obtained in the dislocation dynamic simulation.  相似文献   

5.
By combining grain boundary (GB) and its influence zone, a micromechanic model for polycrystal is established for considering the influence of GB. By using the crystal plasticity theory and the finite element method for finite deformation, numerical simulation is carried out by the model. Calculated results display the microscopic characteristic of deformation fields of grains and are in qualitative agreement with experimental results.The project is supported by National Natural Science Foundation of China.  相似文献   

6.
考虑晶界效应的多晶体有限变形分析   总被引:1,自引:0,他引:1  
将晶界及其影响区综合考虑,建立了考虑晶界效应的力学模型,结合晶体塑性理论,利用有限变形有限元对多晶体进行数值模拟,数值结果显示了细观层次下晶粒变形场的特点,理论计算同实验定性一致。  相似文献   

7.
Up to now, several computational methods have been proposed for crystal plasticity models. The main objective of these computational methods has been to overcome the problem with the non-uniqueness of active slip systems during the plastic deformation of a single crystal. Crystal plasticity models based on a single crystal yield function have been proposed as alternative algorithms to overcome this problem. But the problem with these models is that they use a highly non-linear yield function for the crystal, which makes them computationally expensive. In this paper, a computational method is proposed that would modify a single crystal yield function in order to make it computationally efficient. Also to better capture experimental data, a new parameter is introduced into the single crystal yield function to make it more flexible. For verification, this crystal plasticity model was directly applied for the simulation of hydroforming of an extruded aluminum tube under complex strain paths. It was found that the current model is considerably faster than the previous crystal plasticity model based on a power-law type single crystal yield surface. Due to its computational efficiency, the current crystal plasticity model can also be used to calculate the anisotropy coefficients of phenomenological yield functions.  相似文献   

8.
This paper describes the application of a coupled crystal plasticity based microstructural model with an anisotropic yield criterion to compute a 3D yield surface of a textured aluminum sheet (continuous cast AA5754 aluminum sheet). Both the in-plane and out-of-plane deformation characteristics of the sheet material have been generated from the measured initial texture and the uniaxial tensile curve along the rolling direction of the sheet by employing a rate-dependent crystal plasticity model. It is shown that the stress–strain curves and R-value distribution in all orientations of the sheet surface can be modeled accurately by crystal plasticity if a “finite element per grain” unit cell model is used that accounts for non-uniform deformation as well as grain interactions. In particular, the polycrystal calculation using the Bassani and Wu (1991) single crystal hardening law and experimental electron backscatter data as input has been shown to be accurate enough to substitute experimental data by crystal plasticity data for calibration of macroscopic yield functions. The macroscopic anisotropic yield criterion CPB06ex2 (Plunkett et al., 2008) has been calibrated using the results of the polycrystal calculations and the experimental data from mechanical tests. The coupled model is validated by comparing its predictions with the anisotropy in the experimental yield stress ratio and strain ratios at 15% tensile deformation. The biaxial section of the 3D yield surface calculated directly by crystal plasticity model and that predicted by the phenomenological model calibrated with experimental and crystal plasticity data are also compared. The good agreement shows the strength of the approach. Although in this paper, the Plunkett et al. (2008) yield function is used, the proposed methodology is general and can be applied to any yield function. The results presented here represent a robust demonstration of implementing microscale crystal plasticity simulation with measured texture data and hardening laws in macroscale yield criterion simulations in an accurate manner.  相似文献   

9.
A hierarchical multilevel method is presented for the plastic deformation of polycrystalline materials with texture-induced anisotropy. It is intended as a constitutive material model for finite element codes for the simulation of metal forming processes or for the prediction of forming limits. It consists of macroscopic models of which the parameters are to be identified using the results of two-level (meso/macro) or three-level (micro/meso/macro) models. A few such two-level models are presented, ranging from the full-constraints Taylor model to the crystal-plasticity finite element models, including the grain interaction models GIA, LAMEL and ALAMEL. Validation efforts based on experimental cold rolling textures obtained for steel and aluminium alloys are shortly discussed. An assessment is also given of the assumptions of the LAMEL and ALAMEL models concerning stress and strain rate heterogeneity at grain boundaries, based on the results of a crystal plasticity finite element study. Finally a recent three-level model which also looks at the microscopic level (dislocation substructure) is discussed.  相似文献   

10.
A novel yield function representing the overall plastic deformation in a single crystal is developed using the concept of optimization. Based on the principle of maximum dissipation during a plastic deformation, the problem of single crystal plasticity is first considered as a constrained optimization problem in which constraints are yield functions for slip systems. To overcome the singularity that usually arises in solving the above problem, a mathematical technique is used to replace the above constrained optimization problem with an equivalent problem which has only one constraint. This single constraint optimization problem, the so-called combined constraints crystal plasticity (CCCP) model, is implemented into a finite element code and the results of modeling the uniaxial tensions of the single crystal copper along different crystallographic directions and also hydroforming of aluminum tubes proved the capability of the proposed CCCP model in accurately predicting the deformation in polycrystalline materials.  相似文献   

11.
A new crystal plasticity model incorporating the mechanically induced martensitic transformation in metastable austenitic steel has been formulated and implemented into the finite element analysis. The kinetics of martensite transformation is modeled by taking into consideration of a nucleation-controlled phenomenon, where each potential martensitic variant based on Kurdjumov–Sachs (KS) relationship has different nucleation probability as a function of the interaction energy between externally applied stress and lattice deformation. Therefore, the transformed volume fractions are determined following selective variants given by the crystallographic orientation of austenitic matrix and applied stress in the frame of the crystal plasticity finite element. The developed finite element program is capable of considering the effect of volume change by the Bain deformation and the lattice-invariant shear during the martensitic transformation by effectively modifying the evolution of plastic deformation gradient of the conventional rate-dependent crystal plasticity finite element. The validation of the proposed model has been carried out by comparing with the experimentally measured data under simple loading conditions. Good agreements with the measurements for the stress–strain responses, transformed martensitic volume fractions and the influence of strain rate on the deformation behavior will enable the model to be promising for the future applications to the real forming process of the TRIP aided steel.  相似文献   

12.
While localization of deformation at macroscopic scales has been documented and carefully characterized long ago, it is only recently that systematic experimental investigations have demonstrated that plastic flow of crystalline solids on mesoscopic scales proceeds in a strongly heterogenous and intermittent manner. In fact, deformation is characterized by intermittent bursts (‘slip avalanches’) the sizes of which obey power-law statistics. In the spatial domain, these avalanches produce characteristic deformation patterns in the form of slip lines and slip bands. Unlike to the case of macroscopic localization where gradient plasticity can capture the width and spacing of shear bands in the softening regime of the stress–strain graph, this type of mesoscopically jerky like localized plastic flow is observed in spite of a globally convex stress–strain relationship and may not be captured by standard deterministic continuum modelling. We thus propose a generalized constitutive model which includes both second-order strain gradients and randomness in the local stress–strain relationship. These features are related to the internal stresses which govern dislocation motion on microscopic scales. It is shown that the model can successfully describe experimental observations on slip avalanches as well as the associated surface morphology characteristics.  相似文献   

13.
Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results.  相似文献   

14.
A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.  相似文献   

15.
赵伯宇  胡伟平  孟庆春 《力学学报》2021,53(5):1355-1366
材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源, 从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程. 本文基于晶体塑性理论, 从滑移系的受力和变形出发研究材料的细观损伤, 建立了考虑滑移面分解正应力的细观损伤模型, 为晶体材料解理断裂的分析提供了新方法. 首先, 在晶体弹塑性变形构型的基础上引入损伤变形梯度张量的概念, 从变形运动学着手建立了考虑损伤能量耗散的本构方程, 并推导了塑性流动方程与损伤演化方程; 然后, 建立了相应的数值计算方法, 给出了应力与状态变量的更新算法, 推导了Jacobian矩阵的表达式; 接着, 以$[100]$取向的单晶铜材料为例, 通过有限元计算与试验结果的对比, 并采用粒子群优化算法标定了11个材料细观参数; 最后, 将所提细观损伤模型应用于RVE单轴拉伸过程的模拟, 得到了考虑损伤影响的应力应变曲线, 并分析了材料的塑性流动与损伤演化过程. 结果表明, 本文所提模型能够计算材料在受载过程中的损伤累积效应, 合理反映晶体材料的细观损伤机理.   相似文献   

16.
17.
The size dependent deformation of Cu single crystal micropillars with thickness ranging from 0.2 to 2.5 μm subjected to uniaxial compression is investigated using a Multi-scale Dislocation Dynamics Plasticity (MDDP) approach. MDDP is a hybrid elasto-viscoplastic simulation model which couples discrete dislocation dynamics at the micro-scale (software micro3d) with the macroscopic plastic deformation. Our results show that the deformation field in these micropillars is heterogeneous from the onset of plastic flow and is confined to few deformation bands, leading to the formation of ledges and stress concentrations at the surface of the specimen. Furthermore, the simulation yields a serrated stress–strain behavior consisting of discrete strain bursts that correlates well with experimental observations. The intermittent operation and stagnation of discrete dislocation arms is identified as the prominent mechanism that causes heterogeneous deformation and results in the observed macroscopic strain bursts. We show that the critical stress to bow an average maximum dislocation arm, whose length changes during deformation due to pinning events, is responsible for the observed size dependent response of the single crystals. We also reveal that hardening rates, similar to that shown experimentally, occur under relatively constant dislocation densities and are linked to dislocation stagnation due to the formation of entangled dislocation configuration and pinning sites.  相似文献   

18.
A deformation plasticity model is used to implement the elastic compensation (iterative use of linearly elastic models to approximate elastic/plastic response) simulation of small axisymmetric circular plate deformations by the finite element method. Representative numerical results are presented graphically and used to demonstrate the utility of the approach.  相似文献   

19.
晶体塑性变形离散滑移模型及有限元分析   总被引:1,自引:0,他引:1  
基于韧性单晶体实验现象,建立了描述晶体塑性变形的离散滑移模型.该模型的主要特点是:晶体滑移变形在宏观上是不均匀的,滑移带的分布是离散的.利用晶体塑性理论对模型进行了有限变形有限元分析,计算结果揭示了晶体滑移的离散行为,模拟的应力 应变曲线与实验曲线相吻合  相似文献   

20.
When texture is incorporated in the finite element simulation of a metal forming process, much computer time can be saved by replacing continuous texture and corresponding yield locus updates by intermittent updates after strain intervals of e.g. 20%. The hypothesis that the evolution of the anisotropic properties of a polycrystalline material during such finite interval of plastic deformation can be modelled by just rotating the initial texture instead of continuously updating it by means of a polycrystal deformation model is tested in this work. Two spins for rotating the frame have been assessed: the classical rigid body spin and a crystal plasticity based “Mandel spin” (calculated from the rotated initial texture) which is the average of the spins of all the crystal lattices of the polycrystal. Each of these methods was used to study the evolution of the yield locus and the r-value distribution during the 20% strain interval. The results were compared to those obtained by simulating the texture evolution continuously using a polycrystal deformation model. When the texture was not updated during deformation, it was found that for most initial textures the Mandel spin does not perform better than the rigid body spin, except for some special initial textures for which the Mandel spin is much better. The latter ones are textures which are almost stable for the corresponding strain mode. When the texture was updated after each strain interval of e.g. 20% the Mandel spin performed much better than the rigid body spin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号