首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
纳米Al2O3增强PA6复合材料的摩擦磨损性能研究   总被引:7,自引:1,他引:7  
利用MMW-1型摩擦磨损试验机考察了纳米Al2O3增强PA6复合材料同45#钢对摩时的摩擦磨损性能,采用扫描电子显微镜观察分析了试样磨损表面形貌.结果表明:纳米Al2O3可以提高PA6的耐磨性能;在小于100 N低载荷下纳米Al2O3填充PA6复合材料的滑动摩擦系数符合粘弹性材料的变化规律;只有当填充量适当时,纳米Al2O3微粒才能有效地增强聚合物基体的抗磨粒磨损性能,并阻碍聚合物基体向偶件磨损表面的粘着转移;纳米Al2O3质量分数为10%的PA6复合材料的抗磨性能最佳.  相似文献   

2.
环氧改性的单晶硅表面聚合物薄膜的摩擦学特性研究   总被引:1,自引:1,他引:0  
陈丽  张俊彦 《摩擦学学报》2011,31(6):529-533
以3-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPMS)作为连接层,在单晶硅基底表面制备2,5-呋喃二酮与1-十八烯的共聚物(PMAO)聚合物薄膜.采用傅立叶变换红外光谱仪及原子力显微镜表征薄膜的结构,分别从微观和宏观摩擦学角度考察薄膜的摩擦磨损性能.结果表明:PMAO聚合物通过环氧硅烷分子与基底之间形成化学吸附,GPMS增强了聚合物/无机界面间的粘附性和稳定性;与空白基底相比,聚合物薄膜具有低摩擦系数和优异的抗磨性能,可以作为低载荷下硅基材料的抗磨减摩防护层.  相似文献   

3.
采用粉末冶金技术制备了纳米SiC陶瓷颗粒(0.0%、1.0%、2.2%和3.4%,质量分数,后面未作特殊说明,均为质量分数)强化的CoCrMo基高温抗磨复合材料,对复合材料的相组成及高温摩擦学性能进行了系统性研究. 在室温至1 000 ℃范围内利用球-盘式高温摩擦试验机测试了材料的高温摩擦学性能. 结果表明:复合材料的基体主要由γ (fcc)和ε (hcp)合金相构成,加入纳米SiC后复合材料出现了MoCr相,这有利于复合材料硬度的提高;纳米SiC提高了复合材料的硬度,同时降低了复合材料的密度;摩擦系数与纳米SiC的含量和温度相关,摩擦系数随纳米SiC含量的增加而增大,室温至800 ℃的摩擦系数整体呈下降趋势,1 000 ℃时含2.2%和3.4% SiC的复合材料具有较低的摩擦系数;高温环境下复合材料的抗磨损性能随纳米SiC含量的增加而显著提高;复合材料的磨损机理在不同温度下存在差异,随着温度升高,磨损机理逐渐由磨粒磨损和塑性变形转变为氧化磨损. 室温至1 000 ℃范围内CoCrMo-2.2% SiC具有较优异的高温抗磨损性能,这主要归因于复合材料的高硬度和磨损表面完整的氧化物润滑层.   相似文献   

4.
本文中研究制备了聚酰亚胺(PI)多元纳米复合材料,系统考察了多元纳米复合材料在干摩擦条件下的摩擦学性能,并通过扫描电子显微镜(SEM)、光学显微镜(OM)、X射线光电子能谱(XPS)、红外光谱(ATR-FTIR)和拉曼光谱(Raman)对转移膜的微观形貌和化学成分进行系统分析.摩擦学试验结果表明,与传统碳纤维/石墨(CF/Gr)增强的聚酰亚胺复合材料相比,凹凸棒石(ATP)增强的聚酰亚胺多元纳米复合材料具有更佳的减摩抗磨性,其磨损率降低约69%.结果分析表明在摩擦热和摩擦应力作用下,ATP的摩擦化学产物MgO、SiOx和Al2O3与PI分子链段以及石墨碳在摩擦界面发生摩擦烧结,在金属对偶表面形成含有陶瓷微晶的高质量转移膜,显著提升PI复合材料在干摩擦条件下的减摩抗磨性能.本研究为制备耐高温和长寿命高端摩擦部件提供研究基础.  相似文献   

5.
不同金属基体上MoS2纳米微粒LB膜摩擦学行为研究   总被引:5,自引:4,他引:1  
研究了Cu、Ag及Au等金属基体上二烷基二硫代磷酸修饰MoS2纳米微粒LB膜的摩擦学性能,用红外显微镜分析LB膜在摩擦过程中的结构变化,用电子探针分析考察不同金属基体上LB膜的磨痕形貌.结果表明:DDP修饰MoS2纳米微粒LB膜可有效降低Ag和Cu与GCr15钢对摩时的摩擦系数;该LB膜极易向对偶转移并在摩擦过程中发生摩擦化学变化,主要包括无序化转变及修饰剂的部分分解;无机纳米核起主要承载和抗磨作用.Cu基体上的LB膜耐磨寿命较Ag基体上LB膜的耐磨寿命高100倍,这主要因LB膜与Ag基体的结合较弱.  相似文献   

6.
石墨烯摩擦学及石墨烯基复合润滑材料的研究进展   总被引:14,自引:10,他引:4  
本综述详细介绍了二维碳纳米材料-石墨烯的纳米摩擦学性能,以及作为纳米润滑薄膜、润滑添加剂和润滑填料的研究进展.总结了石墨烯的各种纳米摩擦机理,阐述了通过自组装、多层构筑、表面化学改性等技术改善石墨烯与基底的结合性、润滑剂中的分散性,与基体材料的界面结合强度以及石墨烯提高材料减摩抗磨性能的机制,并指出石墨烯作为高性能润滑材料仍需解决的问题及未来的研究趋势.  相似文献   

7.
使用改进后的四球摩擦磨损试验机考察了不同电磁场强度和不同载荷条件下菜籽油的摩擦学性能,结合扫描电子显微镜(SEM)、X射线能谱仪(EDS)和X射线光电子能谱仪(XPS)分析了磨斑的表面形貌及表面典型元素的化学状态,并对摩擦学机理进行了初步探讨.结果表明:在所考察的工况下,电磁场有利于改善菜籽油的抗磨减摩性能,其强度越大,对菜籽油抗磨减摩性能的改善效果越好;电磁场通过促进吸附膜的吸附作用和O元素与金属表面作用,有利于在磨斑表面生成更厚、更致密的摩擦化学反应膜,从而增强了菜籽油的抗磨减摩性能;不同强度的电磁场可能会改变长链菜籽油分子在摩擦界面的吸附形态而影响其减摩性能.  相似文献   

8.
对自润滑聚合物复合材料在316℃(600°F)下于空气中与AISI M-5C钢相对滑动时的摩擦学特性进行了测定。所有的复合材料均含有4种组分——聚酰亚胺树脂基体,增强用三维正交法织成的石墨纤维编织物、无机固体润滑剂填料和磷酸氢二铵[(NH_4)_2HP0_4]粘结剂。结果表明,被评价的15种配方中的8种都具有低摩擦系数、低磨损和好的转移膜。评价了各种复合材料中组分的改变对摩擦学性能的影响,并且发现纤维类型的影响最大, 为了实现气体透平发动机高速推力轴承的固体润滑,选定了一种机械和摩擦学综合特性最好的复合材料制作轴承保持器。  相似文献   

9.
何雪 《摩擦学学报》2008,28(3):289-291
通过对2000~2006年和2003~2006年期间<摩擦学学报>发表的被引频次排名前15位论文的被引用情况进行统计分析,探讨了近年来我国摩擦学学科的研究热点与发展动向.指出纳米颗粒作为润滑油添加剂的摩擦化学作用机制研究,特别是纳米颗粒添加剂在油/脂中的减摩、抗磨及极压作用机制研究是近年来我国摩擦学领域的主要研究热点之一,其它研究热点还包括纳米颗粒增强陶瓷涂层、复合涂层和聚合物复合材料,以及生物摩擦学和绿色润滑油添加剂摩擦学等.这与摩擦学新材料的高性能化和多功能化发展方向相吻合.  相似文献   

10.
Ti对镍基高温自润滑复合材料力学和摩擦学性能的影响   总被引:1,自引:0,他引:1  
本文中采用热压烧结技术制备了镍基高温自润滑复合材料,研究了镍基合金基体中添加少量Ti对复合材料力学与高温摩擦学性能的影响.研究结果显示:两者的摩擦系数整体较低,添加少量Ti后,复合材料的硬度提高,室温弯曲强度明显降低,室温压缩强度基本不变,摩擦系数总体上略有降低,抗磨性能提高.摩擦机理方面,两者基本相同.  相似文献   

11.
无机硼酸盐润滑油抗磨添加剂的发展现状   总被引:20,自引:7,他引:20  
本文结合作者自身多年从事的有关研究,对无机硼酸盐润滑油抗磨添加剂的发展现状作了综合介绍。文章在简要阐明了无机硼酸盐的分子结构和制备方法之后,着重就其抗磨性能和抗磨作用机理之研究的广度和深度进行了归纳与分析,比较全面地反映了人们对这类添加剂目前的研究和认识水平。文章最后还强调指出,无机硼酸盐与含S、P、Cl添加剂的配伍性及其分散体的稳定性和抗水性等都还有待深入研究。  相似文献   

12.
利用正交实验设计考察了EAK、SCO和T304作为极压添加剂在铜板带冷轧乳液中的综合摩擦学性能,分析影响基础油极压抗磨性能的主要因素;研究不同类型的添加剂复配后的协同润滑特征,优选了最佳的复配比例,并通过轧制试验研究极压剂复配体系的工艺润滑效果。结果表明:影响基础油极压抗磨性能因素大小顺序为EAK>SCO>T304;硫系添加剂SCO和磷系添加剂EAK复配,可以有效提高润滑油的油膜承载能力和极压抗磨性能,当两者添加比例为6:1时复配体系协同作用效果最佳;以EAK-SCO体系配制的乳化液能有效减少轧制过程的摩擦,降低轧制能耗,铜带轧后表面十分光洁平整,因此在铜板带轧制润滑中具有良好的应用前景。  相似文献   

13.
钼化合物润滑材料的摩擦学应用与研究发展现状   总被引:12,自引:4,他引:12  
对二硫化钼在粘结固体的润滑膜,塑料基及其它复合材料和润滑油脂中的摩擦学应用与研究现状进行了综述;与二硫化钼对比分析了几种油溶性有机化合物作为润滑油脂添加剂的摩擦学性能,产简要介绍了新型含钼润滑材料-硫代钼酸盐及有机物修饰的纳米二硫化钼的摩擦学应用前景。  相似文献   

14.
含硫硼酸酯中硫和硼在菜籽油中的协同减摩抗磨作用   总被引:3,自引:0,他引:3  
合成了一系列含硫硼酸酯 ,在四球摩擦磨损试验机上考察了含硫硼酸酯化合物作为菜籽油添加剂的摩擦学性能 ,并用扫描电子显微镜和 X射线光电子能谱仪观察分析了钢球磨损表面形貌和表面膜中元素的化学状态 .结果表明 :含硫硼酸酯的摩擦学性能与其分子内硫和硼的含量密切相关 ;结构相似、元素组成不同的硼酸酯的抗磨效果与所含活性元素的数量不存在对应关系 ,而结构相似且 S和 P含量相同的硼酸酯的摩擦磨损行为相似 .钢球磨损表面分析结果表明 ,在摩擦过程中含硫硼酸酯与钢球表面发生摩擦化学反应 ,形成了含硫、硼、氧及碳等元素的表面保护膜  相似文献   

15.
合成制备了两种胆固醇类季磷盐油溶性类离子液体,并将其分别作为聚α烯烃PAO-10的润滑添加剂,静置试验和热重分析结果表明两种油溶性类离子液体在PAO-10中具有良好的分散稳定性和热稳定性. 微动摩擦磨损测试结果表明两种类离子液体可显著改善基础油对钢/铝摩擦副的摩擦学性能. 扫描电子显微镜(SEM)结果表明空白PAO-10润滑摩擦副时磨损类型以黏着磨损为主,以添加两种离子液体的混合油样为润滑剂时磨斑直径显著降低,此时摩擦副间磨损类型以磨粒磨损和腐蚀磨损为主. X射线光电子能谱分析(XPS)与X射线能谱仪(EDS)表明类离子液体中的活性元素在摩擦过程中可与铝基体表面发生摩擦化学反应. 两种类离子液体的润滑机理归因于类离子液体与金属基体发生摩擦化学反应生成具有减摩抗磨作用的磷酸盐和硫酸盐等耐磨化合物.   相似文献   

16.
采用碳酸钙纳米颗粒与全氟聚醚型超分子凝胶复合得到了一种新型的纳米颗粒复合超分子凝胶润滑剂. 超分子凝胶具有错综复杂的网络结构,有效地提高了碳酸钙纳米颗粒在全氟聚醚润滑油中的分散稳定性. 此外,碳酸钙纳米颗粒作为添加剂极大地提高了超分子凝胶的润滑性能,使其表现出较好的耐高温性能,以及较高的承载力. 采用差式扫描量热仪、热重分析仪和流变分析仪对该复合润滑剂的热力学性能进行表征,结果显示该复合润滑剂具有很好的热稳定性以及较好的力学性能. 最后,通过X射线光电子能谱(XPS)对其摩擦机理进行表征,结果表明碳酸钙纳米颗粒复合超分子凝胶润滑剂优异的摩擦学性能可归因于碳酸钙纳米颗粒在摩擦副表面形成了易剪切的薄膜,以及小尺寸的纳米粒子在摩擦过程中对摩擦表面进行的自修复效应.   相似文献   

17.
合成了 3种含硫硼酸酯 ,利用四球摩擦磨损试验机考察了含硫硼酸酯、磷酸三甲酚酯及其复合添加剂对菜籽油摩擦学性能的影响以及添加剂结构、组成与其摩擦学性能的关系 ,用 X射线光电子能谱仪和扫描电子显微镜观察分析了磨损表面的形貌和元素化学状态 .结果表明 :合成的含硫硼酸酯在一定浓度范围可以改善菜籽油的抗磨性能 ;所考察的添加剂在适当的添加量下均可提高菜籽油的承载能力和抗磨性能 ,但减摩效果不显著 ;含上述添加剂的菜籽油在摩擦过程中发生摩擦化学反应 ,生成由菜籽油甘油酯和添加剂摩擦化学反应产物组成的边界润滑膜 ,从而改善菜籽油的摩擦学性能  相似文献   

18.
采用四球摩擦磨损试验机对表面修饰的纳米AlOOH粒子及纳米Fe3O4粒子在液体石蜡中的摩擦学性能进行了对比研究.结果表明:这2种纳米粒子均能提高液体石蜡的减摩耐磨性能和PB值,纳米AlOOH粒子因具有层状结构,表现出更好的减摩耐磨性能,随着纳米粒子粒径的增大,其减摩耐磨的最佳浓度出现升高的趋势.对磨斑表面的SEM、AFM和XPS分析结果表明,纳米粒子能沉积在摩擦副表面,减少摩擦副表面微凸体的直接接触,从而减少微凸体之间的犁削和黏着.  相似文献   

19.
WSe2纳米结构的合成及减摩性能研究   总被引:2,自引:0,他引:2  
将W粉和Se粉按一定比例混合,直接密封在石英管中加热或高能球磨、压片,在Ar气氛中加热,得到了不同形貌的WSe2纳米结构.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM、HRTEM)分析了WSe2纳米结构的组成、微观形貌和组织形态;利用UMT-2摩擦试验机考察了WSe2作为HVI500液体基础油添加剂的摩擦磨损性能.研究结果表明:直接密封加热得到的产物为棒状WSe2纳米材料,最小棒直径为6 nm;球磨、压片后加热得到WSe2纳米颗粒,颗粒的平均尺寸在50 nm以下,二者都具有层状结构和良好的结晶性.添加质量分数5%的WSe2纳米材料作为基础油添加剂能够显著降低摩擦系数,减少磨损,增强了材料抗疲劳磨损能力.  相似文献   

20.
在 2 0 0 SN矿物基础油中 ,用原位合成法、复分解法以及微波辅助合成法分别合成了月桂酸铅、油酸铅、环烷酸铅、硬脂酸铅和烷基水杨酸铅 .用四球摩擦磨损试验机 ,在高速低负荷及低速高负荷两组试验条件下评价了其摩擦学性能 .结果表明 :不同结构羧酸铅的油溶性、抗磨减摩性能以及抗极压性能存在较大差异 ,其摩擦学性能与羧基结构密切相关 ,环烷酸铅和烷基水杨酸铅的油溶性最好 ;月桂酸铅的抗磨性能和抗极压性能最好 ,油酸铅的减摩性能最好 .通过对铅盐分子结构及相应钢球磨斑表面进行扫描电子显微镜和 X射线光电子能谱分析 ,发现铅盐对基础油摩擦学性能的改善归因于摩擦过程中有机铅盐在摩擦副表面形成一定强度的吸附膜以及部分吸附膜转化为铅氧化物膜的摩擦化学反应 .铅盐烷基链结构的不同使其在摩擦副表面的吸附量和吸附强度不同 ,从而影响润滑油膜的化学组成和物理性能 ,并进而产生摩擦学性能差异  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号