首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在200SN矿物基础油中,用原位合成法、复分解法以及微波辅助合成法分别合成了月桂酸铅、油酸铅、环烷酸铅、硬脂酸铅和烷基水杨酸铅,用四球摩擦磨损试验机,在高速低负荷及低速高负荷两组试验条件下评价了其摩擦学性能。结果表明:不同结构羧酸铅的油溶性、抗磨减摩性能以及抗极压性能存在较大差异,其摩擦学性能与羧基结构密切相关,环烷酸铅和烷基水杨酸铅的油溶性最好;月桂酸铅的抗磨性能和抗极压性能最好,油酸铅的减摩性能最好。通过对铅盐分子结构及相应钢球磨斑表面进行扫描电子显微镜和X射线光电子能谱分析,发现铅盐对基础油摩擦学性能的改善归因于摩擦过程中有机铅盐在摩擦副表面形成一定强度的吸附膜以及部分吸附膜转化为铅氧化物膜的摩擦化学反应。铅盐烷基链结构的不同使其在摩擦副表面的吸附量和吸附强度不同,从而影响润滑油膜的化学组成和物理性能,并进而产生摩擦学性能差异。  相似文献   

2.
十二烷氧基硼酸锌的合成及其抗磨减摩性能研究   总被引:10,自引:2,他引:8  
合成了含硼及锌的油溶性化合物十二烷氧基硼酸锌,将其用作润滑油抗磨减摩添加剂,并用四球及环-块摩擦磨损试验机评价了其摩擦学性能。结果表明:十二烷氧基硼酸锌添加剂使500SN基础油的抗磨性能得到明显改善,其承载能力明显提高,摩擦系数明显降低,扫描电子显微镜观察证实磨斑表面有含硼沉积物,结合XPS分析可以推断添加剂在摩擦过程中发生了摩擦化学反应,并在摩擦副表面形成了抗磨减摩膜,从而改善摩擦磨损性能。  相似文献   

3.
采用Optimal SRV型微动摩擦磨损试验机评价了氟代二酮作为润滑油及其添加剂的摩擦学性能,并通过钢盘磨损表面的X射线光电子能谱和扫描电子显微镜分析探讨了氟代二酮的减摩抗磨作用机理.结果表明,氟代二酮的摩擦学性能受其化学结构和试验载荷的影响;烷基芳基二酮的抗磨效果最好;摩擦过程中氟代二酮在摩擦副表面发生了摩擦化学反应,形成了由化学反应膜和吸附膜构成的边界润滑膜,从而起到减摩抗磨作用.  相似文献   

4.
一些磷-氮型极压抗磨添加剂性能的研究   总被引:7,自引:0,他引:7  
合成了一些磷-氮型极压抗磨添加剂烷基亚磷酸酯胺盐和氮杂环胺盐,并对其油溶性和润滑性等进行了试验研究。结果表明,磷-氮型极压抗磨添加剂的化学结构对其油溶性和极压抗磨性都有较大的影响:烷基链增长有助于油溶性的改善,氮杂环胺盐的油溶性更好;伯胺盐的抗磨性比仲胺盐和叔胺盐的都好,氮杂环胺盐的抗磨性更好;磷-氮型极压抗磨添加剂的减摩性明显比硫化烯烃、烷基亚磷酸酯和苯三唑十八胺的都好,有的在250℃时的摩擦系数仅约为0.04.X射线光电子能谱和俄歇电子能谱分析发现,磷-氮型极压抗磨添加剂在摩擦表面形成了一种含氮富磷的化学反应膜。其中,元素磷是以磷酸铁的化合态形式存在,而元素氮则是以其原有的价态形式存在,这表明氮参与了整个摩擦过程。在试验研究和分析讨论的基础上,通过综合归纳还提出了磷-氮型极压抗磨添加剂的作用机理模式图。  相似文献   

5.
高温润滑脂中WS_2亚微米粒子的摩擦学性能研究   总被引:2,自引:1,他引:1  
以新型润滑材料WS2亚微米粒子作为高温润滑脂添加剂,对其在高温润滑脂中于不同温度下所起的抗磨、减摩、抗极压等摩擦学性能进行了研究,并用电子探针显微镜和俄歇电子能谱仪分析了钢球磨斑表面形貌与表面典型元素的面分布和深度分布.结果表明:在不同温度尤其高温下,WS2亚微米粒子能显著提高润滑脂的摩擦学性能;在摩擦过程中,WS2亚微米粒子在摩擦副表面形成WS2吸附膜和含Fe、S的化学反应膜来有效减少摩擦磨损,增强润滑脂的抗磨、减摩和极压性能,从而更好地保护摩擦表面.  相似文献   

6.
发展高性能离子液润滑脂是离子液体作为新型润滑材料在摩擦学领域的热点和重点.针对这一问题,用三丁基烷基季膦盐离子液体为基础油,聚四氟乙烯微粉为稠化剂制备了三种具有较高滴点的润滑脂.在钢/钢摩擦副表面摩擦学研究结果表明:与1-辛基-3甲基咪唑磷酸二辛基酯盐离子液体润滑脂相比,在室温和高温(100℃)下,三丁基烷基季膦盐离子液体润滑脂均具有优异的减摩抗磨性能.通过磨斑表面的XPS分析和电场条件下考察离子液体润滑脂摩擦系数变化,推断三丁基烷基季膦盐离子液体润滑脂的减摩抗磨机理为离子液体润滑脂中的聚四氟乙烯与摩擦表面发生摩擦化学反应生成含FeF_2的化学反应膜,以及离子液体阳离子、阴离子以物理吸附的方式在摩擦表面形成稳定吸附膜.  相似文献   

7.
多烷基环戊烷对钢/钢摩擦副的润滑性能研究   总被引:1,自引:0,他引:1  
高平  彭立  刘维民 《摩擦学学报》2011,31(6):546-550
合成了系列多烷基环戊烷,采用傅立叶变换红外光谱仪和核磁共振谱仪进行表征,确定为目标化合物,并测定产物的黏度、倾点和密度.将多烷基环戊烷用作润滑剂,在SRV摩擦磨损试验机上评价对钢/钢摩擦副的润滑作用,并利用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)分析钢块磨损表面形貌及化学状态.结果表明:多烷基环戊烷作为润滑剂对钢/钢摩擦副具有良好的减摩抗磨性能,其摩擦学性能受取代基的影响;取代基碳链越长,减摩效果越好;XPS结果显示低载荷时,MACs在摩擦副表面形成较为牢固的物理吸附膜,起到减摩抗磨的作用;随着载荷的增大,MACs借助于含Fe2O3和摩擦聚合物等的边界润滑膜来保护材料表面.  相似文献   

8.
环烷酸亚锡的合成及其摩擦学性能研究   总被引:3,自引:0,他引:3  
合成了油溶性环烷酸亚锡,并对其结构进行了表征,用四球摩擦磨损试验机考察了环烷酸亚锡作为26#白油添加剂的摩擦学性能,对比考察了其同硫系和磷系添加剂的复配作用,并用俄歇电子能谱研究了磨斑表面边界膜的化学组成和元素分布。结果表明:所合成的环烷酸亚锡的锡含量(质量分数)为18.1%,其在25℃和-10℃下均具有较好的油溶性;在中低载荷条件下,环烷酸亚锡作为润滑油添加剂具有良好的承载能力和抗磨性能,并具有一定的减摩能力;环烷酸亚锡与硫系添加剂具有良好的协同效应,其主要原因是环烷酸亚锡在摩擦表面形成了含锡的摩擦表面膜。  相似文献   

9.
一些磷—氮型极压抗磨添加剂性能的研究   总被引:8,自引:6,他引:8  
合成了一些磷-氮型极压抗磨添加剂基亚磷酸酯胺盐和氮杂环胺盐,并对其油溶性和润滑性等进行了试验研究,结果表明,磷-氮型极压抗磨添加剂的化学结构对其油溶性和极压抗磨性都有较大的影响:烷基链增长有助于油溶性的改善,氮杂环胺盐的油溶性更好,伯胺盐的抗磨性比仲胺盐和叔胺盐的都好,氮杂环胺盐的抗磨性更好;磷-氮型极压抗磨添加剂的减摩性明显比硫化烯烃、烷基亚磷酸酯和苯三唑十八胺的都好,有的在250℃时的摩擦系数  相似文献   

10.
硫代磷酸三正辛酯的合成及其摩擦学性能研究   总被引:5,自引:2,他引:5  
合成了一统代及四硫代磷酸三正辛酯,用电感耦合等离子体原子发射光谱仪、质谱仪和傅立叶转换红外光谱仪等表征了所合成的一硫代及四硫代磷酸三正辛酯的组成和结构,并在四球摩擦磨损试验机上考察了其在液体石蜡中的摩擦学性能;用扫描电子显微镜和X射线光电子能谱仪对钢球磨痕表面进行了分析表征。结果表明:所合成的一硫代磷酸酯具有比二烷基二硫代磷酸锌更优异的摩擦学性能,可以显著提高液体石蜡的承载能力和抗磨能力,并能在适当浓度和较高载荷(≥400N)下改善液体石蜡的减摩性能;而活性元素含量较高的四硫代磷酸酯对液体石蜡的极压、抗磨和减摩性能的影响不大,这可能是由于其导致腐蚀磨损所致,磨损表面分析结果表明,含添加剂的石蜡油在摩擦过程中发生腐蚀磨损,主要形成了由物理吸附膜和摩擦化学反应膜组成的复合膜。  相似文献   

11.
氮化钛硬质薄膜在不同种类润滑油下的摩擦学性能研究   总被引:1,自引:1,他引:0  
采用球-盘摩擦试验机分别考察了氮化钛硬质薄膜与轴承钢和氮化硅陶瓷组成的摩擦副在不同种类润滑油条件下的摩擦学性能,并表征了其磨痕表面形貌与元素成份.结果显示:与Ti N硬质薄膜干摩擦性能相比,润滑油可显著降低摩擦系数,延长磨损寿命,且具有较长烷基碳链的润滑油性能较优;当上试球材料不同时,其油润滑条件下的性能亦不同.相同润滑油条件下,氮化硅球作为摩擦副时,其润滑性能优于轴承钢球.磨痕表面形貌及能谱分析结果表明:具有较长烷基碳链的润滑油在摩擦副研磨滑动过程中起到油性剂的作用,而短碳链硅油分子结构中含有氯元素,虽通过摩擦化学反应生成边界润滑膜,但不完整致密,以致短时间内润滑失效.  相似文献   

12.
利用球-盘式摩擦磨损试验机,研究了润滑油极压抗磨添加剂硫化烯烃在Ni-P电刷镀层和Ni-Cu-P电刷镀层表面的作用效果,并且利用X射线光电子能谱仪和俄歇电子能谱仪分析了各摩擦表面边界润滑膜的成分和结构,进而分析讨论了添加剂硫化烯烃在这2种镀层摩擦表面的作用机理.结果表明,在基础油液体石蜡中添加适量的硫化烯烃润滑时,Ni-P镀层的承载能力显著提高,Ni-P镀层和Ni-Cu-P镀层的磨损率都明显降低.硫化烯烃在镀层摩擦表面反应生成的NiS膜具有良好的极压、抗磨和一定的减摩作用  相似文献   

13.
油溶性烷氧基硼酸钠的制备及其抗磨减摩性能研究   总被引:4,自引:2,他引:2  
合成了油溶性烷氧基硼酸钠,用红外光谱(IR)和等离子体原子吸收光谱(ICP)表征其结构与组成,在四球及环块摩擦磨损试验机上考察了其摩擦学性能,采用扫描电子显微镜(SEM)及光电子能谱仪(XPS)观察分析磨斑表面成分。结果发现:所合成的油溶性含硼和钠的化合物在磨斑表面形成由FeB,Fe2B和沉积物等组成的抗磨减摩膜,从而显著改善油品的抗磨减摩性能。  相似文献   

14.
采用SRV摩擦磨损试验机评价了磷酸三甲酚酯(TCP)、磷酸二丁酯(DBP)、十二胺(DA)和磷酸胺盐(PAS)抗磨添加剂在液体石蜡中对钢-铝摩擦副摩擦磨损性能的影响。采用X射线光电子能谱仪分析铝试磨痕表面边界润滑膜中的P和N元素的化学状态。结果表明,含P抗磨添加剂可以有效提高铝合金的耐磨性,而其中以磷氮剂的效果最好。其它含磷添加剂也可以有效地降低磨损。XPS分析表明,在铝合金磨损表面形成了含磷酸铝  相似文献   

15.
两种磷氮类添加剂的极压抗磨机理研究   总被引:8,自引:4,他引:4  
合成了磷酸胺盐和膦酸胺盐极压抗磨添加剂,在防锈和防腐性合格的基础上,在四球摩擦磨损试验机上进行了承载能力试验,并与硫化异丁烯、二烷基二硫代磷酸锌和磷酸三甲酚酯进行了抗磨减摩性能对比试验,同时通过对磨痕进行X射线光电子能谱分析,探讨了磷和膦酸胺盐添加剂的极压抗磨作用机理。结果显示:2种磷和膦酸胺盐极压抗磨添加剂的承载能力优于常用的含硫添加剂;其摩擦系数处于0.05~0.06之间,大大低于对比添加剂的摩擦系数。XPS分析结果表明,在磨痕表面P元素以磷酸铁或亚磷酸铁以及磷化物的吸附形式存在,并起到极压抗磨和减摩作用;N元素存在形式非常复杂,可能是以吸附形式存在。  相似文献   

16.
蓖麻油聚氧乙烯醚水基润滑液摩擦学特性研究   总被引:5,自引:4,他引:1  
本文以蓖麻油聚氧乙烯醚水基润滑液为研究对象,分别使用润滑膜厚度测量仪、微摩擦试验机和四球摩擦试验机对其成膜特性、摩擦磨损特性和抗磨极压特性进行了系统的研究,并用扫描电子显微镜和能量色散光谱仪对摩擦磨损机制进行了分析。结果表明:蓖麻油聚氧乙烯醚提高了纯水的成膜能力,能够在钢-铝摩擦副形成有效的润滑膜,起到良好的减摩抗磨效果。随着浓度的增大,对钢-铝摩擦副的减摩抗磨性能和四球摩擦试验的抗磨极压性能都得到了提高。  相似文献   

17.
硫代磷酸咪唑盐作为菜籽油抗磨添加剂   总被引:1,自引:1,他引:0  
菜籽油作为环境友好润滑剂正逐步得到应用.本文中合成了两种烷基硫代磷酸咪唑盐作为菜籽油无灰抗磨剂(分别记为PS8-8和PS8-12),并与常用的二丁基二硫代磷酸叔辛胺盐(P-DDP)抗磨剂相比较.四球试验和磨斑形貌分析结果表明,新合成的两种添加剂均具有较好的极压抗磨性能,摩擦系数从0.11降低至0.07,磨斑直径从0.82 mm减小至0.28 mm,PB值从490 N增加至981 N.能谱分析结果表明,在摩擦过程中添加剂中的P和S元素与基底反应形成了相应的盐,提高了菜籽油的摩擦学性能.新合成的硫代磷酸咪唑盐是一类性能优异的菜籽油极压抗磨添加剂,有可能作为菜籽油添加剂获得实际应用.  相似文献   

18.
醇和羧酸添加剂对菜籽油抗磨与极压性能的影响   总被引:3,自引:1,他引:2  
在四球摩擦磨损试验机上考察了醇-菜籽油及羧酸-菜籽油对钢-钢摩擦副抗磨与极压性能的影响,并分析了其润滑机制。结果表明,醇不能改善菜籽油的抗磨性能及承载能力,羧酸能明显改善菜籽油的抗磨性能,但却降低其承载能力,这与菜籽油本身的特性及三者的极性强弱有关。钢球磨损表面XPS分析表明:2种润滑剂体系在摩擦过程中均形成了复杂的表面保护膜。2种润滑剂体系在钢球表面形成的保护膜的特性不同,这决定了它们个有不同的  相似文献   

19.
合成制备了两种胆固醇类季磷盐油溶性类离子液体,并将其分别作为聚α烯烃PAO-10的润滑添加剂,静置试验和热重分析结果表明两种油溶性类离子液体在PAO-10中具有良好的分散稳定性和热稳定性. 微动摩擦磨损测试结果表明两种类离子液体可显著改善基础油对钢/铝摩擦副的摩擦学性能. 扫描电子显微镜(SEM)结果表明空白PAO-10润滑摩擦副时磨损类型以黏着磨损为主,以添加两种离子液体的混合油样为润滑剂时磨斑直径显著降低,此时摩擦副间磨损类型以磨粒磨损和腐蚀磨损为主. X射线光电子能谱分析(XPS)与X射线能谱仪(EDS)表明类离子液体中的活性元素在摩擦过程中可与铝基体表面发生摩擦化学反应. 两种类离子液体的润滑机理归因于类离子液体与金属基体发生摩擦化学反应生成具有减摩抗磨作用的磷酸盐和硫酸盐等耐磨化合物.   相似文献   

20.
苯并三氮唑及其衍生物在菜籽油中的摩擦学性能研究   总被引:10,自引:7,他引:10  
利用四球试验机考察了苯并三氮唑及其衍生物在菜籽油中的摩擦学性能,并用X射线光电子能谱和扫描电子显微镜分析观察磨斑表面的化学组成和形貌。结果表明,苯并三氮唑在菜籽油中有良好的抗磨作用,在其分子中引入长链烷基虽然提高了其在菜籽油中的溶解度,但却降低了其抗磨减摩性能,这主要是由于苯并三氮唑有效成分的减少以及添加剂和基础油之间的竞争吸附所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号