首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The classical third-order weighted essentially nonoscillatory (WENO) scheme is notoriously dissipative as it loses the optimal order of accuracy at critical points and its two-point finite difference in the smoothness indicators is unable to differentiate the critical point from the discontinuity. In recent years, modifications to the smoothness indicators and weights of the classical third-order WENO scheme have been reported to reduce numerical dissipation. This article presents a new reference smoothness indicator for constructing a low-dissipation third-order WENO scheme. The new reference smoothness indicator is a nonlinear combination of the local and global stencil smoothness indicators. The resulting WENO-Rp3 scheme with the power parameter p=1.5 achieves third-order accuracy in smooth regions including critical points and has low dissipation, but numerical results show this scheme cannot keep the ENO property near discontinuities. The recommended WENO-R3 scheme (p=1) keeps the ENO property and performs better than several recently developed third-order WENO schemes.  相似文献   

2.
为更准确捕捉复杂流场的流动细节,通过对WENO格式的光滑因子进行改进,发展了一种新的五阶WENO格式。对三阶ENO格式进行加权可以得到五阶WENO格式,但是不同的加权处理,WENO格式在极值处保持加权基本无振荡的效果不同,本文构造了二阶精度的局部光滑因子,及不含一阶二阶导数的高阶全局光滑因子,从而实现WENO格式在极值处有五阶精度。基于改进五阶WENO格式,对一维对流方程、一维和二维可压缩无粘问题进行算例验证,并与传统WENO-JS格式和WENO-Z格式进行比较。计算结果表明,改进五阶WENO格式有较高的精度和收敛速度,有较低的数值耗散,能有效捕捉间断、激波和涡等复杂流动。  相似文献   

3.
This paper has analyzed the weights of the fifth‐order weighted essentially nonoscillatory scheme suggested by Jiang and Shu and a modified smoothness estimator is suggested to improve the accuracy. Using a function of the minimum and maximum of the original smoothness estimators, the new smoothness estimators have smaller variation among them than the original ones in smooth regions. Hence, as the new weights are closer to the optimal weights, the numerical accuracy is improved. Several numerical experiments are presented to demonstrate the accuracy and robustness of the new scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
为高效和高精度求解长距离输水系统瞬变流变化过程,应用三阶ENO有限体积格式求解一维管道非恒定流方程组,基于Lax-Friedrichs通量裂分法重构界面通量,上下游界面采用虚拟网格技术并结合交叉管网边界条件建立了一套高效和高精度求解管道瞬变流水锤波的数值模型。引入GPU加速技术,实现对大型输水系统的高效计算。通过特征线法、一阶及二阶Godunov有限体积格式对模型进行验证,结果表明,三阶ENO格式在极低的Courant数时也能保持较好的间断捕捉性能且无非物理振荡。同时,对Courant数的高度不敏感性,使得模型划分网格时具有高度的灵活性并能显著提高计算速度。应用GPU加速技术,发现模型在较多网格数时有明显的加速效果,且加速效果随网格数增多而显著。本文模型可为长距离输水系统非恒定瞬变过程的高效精准快速模拟预测提供理论支撑。  相似文献   

5.
Many efforts have been made to improve the accuracy of the conventional weighted essentially nonoscillatory (WENO) scheme at transition points (connecting a smooth region and a discontinuity point). This paper analyzes these works and further develops a more effective multistep WENO scheme. Theoretical analysis and numerical results show that the new scheme not only improves the accuracy by one order higher than the traditional fifth-order WENO schemes at transition point but also maintains the fifth-order accuracy in smooth regions even at critical point where the first derivative vanishes.  相似文献   

6.
A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypoelastic constitutive model and the von Mises’ yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the presented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE).  相似文献   

7.
一维溃坝洪水波的高精度数值模拟   总被引:2,自引:0,他引:2  
将ENO(Essentially Non-Oscillatory)格式和Runge-Kutta时间离散的思想应用于一维Saint-Venant方程组的求解,数值模拟溃坝洪水,得出了水位和流速的沿程分布。经与理论解比较可见,数值解在间断波附近没有出现数值振荡,水位和流速大小均符合较好,表明ENO格式是一类新的高精度无振荡差分格式,采用ENO格式所建立的高分辨率模型能够很好地模拟溃坝波的演进过程。  相似文献   

8.
ABSTRACT

For the one-stage third-order gas-kinetic scheme (GKS), successful applications have been achieved for the three-dimensional compressible flows [Pan, L., K. Xu, Q. Li, and J. Li. 2016. “An Efficient and Accurate Two-stage Fourth-order Gas-kinetic Scheme for the Navier-Stokes Equations.” Journal of Computational Physics 326: 197–221]. The high-order accuracy of the scheme is obtained by integrating a multidimensional time-accurate gas distribution function over the cell interface within a time step without using Gaussian quadrature points and Runge-Kutta time-stepping technique. However, to the further increase of the order of the scheme, such as the fourth-order one, the one step formulation becomes very complicated for the multidimensional flow. Recently, a two-stage fourth-order GKS with high efficiency has been constructed for two-dimensional inviscid and viscous flow computations ([Li, J., and Z. Du. 2016. “A Two-stage Fourth Order Time-accurate Discretization for Lax-Wendroff Type Flow Solvers I. Hyperbolic Conservation Laws.” SIAM Journal on Scientific Computing 38: 3046–3069]; Pan et al. 2016), and the scheme uses the time accurate flux function and its time derivatives. In this paper, a fourth-order GKS is developed for the three-dimensional flows under the two-stage framework. Based on the three-dimensional WENO reconstruction and flux evaluation at Gaussian quadrature points on a cell interface, the high-order accuracy in space is achieved first. Then, the two-stage time stepping method provides the high accuracy in time. In comparison with the formal third-order GKS [Pan, L., and K. Xu. 2015. “A Third-order Gas-kinetic Scheme for Three-dimensional Inviscid and Viscous Flow Computations.” Computers & Fluids 119: 250–260], the current fourth-order method not only improves the accuracy of the scheme, but also reduces the complexity of the gas-kinetic flux solver greatly. More importantly, the fourth-order GKS has the same robustness as the second-order shock capturing scheme [Xu, K. 2001. “A Gas-kinetic BGK Scheme for the Navier-Stokes Equations and its Connection with Artificial Dissipation and Godunov Method.” Journal of Computational Physics 171: 289–335]. Numerical results validate the outstanding reliability and applicability of the scheme for three-dimensional flows, such as the cases related to turbulent simulations.  相似文献   

9.
This article presents an improved fifth-order finite difference weighted essentially nonoscillatory (WENO) scheme to solve Hamilton-Jacobi equations. A new type of nonlinear weights is introduced with the construction of local smoothness indicators on each local stencil that are measured with the help of generalized undivided differences in L1-norm. A novel global smoothness measurement is also constructed with the help of local measurements from its linear combination. Numerical experiments are conducted in one- and two-dimensions to demonstrate the performance enhancement, resolution power, numerical accuracy for the proposed scheme, and compared it with the classical WENO scheme.  相似文献   

10.
In this article, we present an improved third-order finite difference weighted essentially nonoscillatory (WENO) scheme to promote the order of convergence at critical points for the hyperbolic conservation laws. The improved WENO scheme is an extension of WENO-ZQ scheme. However, the global smoothness indicator has a little different from WENO-ZQ scheme. In this follow-up article, a convex combination of a second-degree polynomial with two linear polynomials in a traditional WENO fashion is used to compute the numerical flux at cell boundary. Although the same three-point information is adopted by the improved third-order WENO scheme, the truncation errors are smaller than some other third-order WENO schemes in L and L2 norms. Especially, the convergence order is not declined at critical points, where the first and second derivatives vanish but not the third derivative. At last, the behavior of improved scheme is proved on a variety of one- and two-dimensional standard numerical examples. Numerical results demonstrate that the proposed scheme gives better performance in comparison with other third-order WENO schemes.  相似文献   

11.
We propose a variable relaxation scheme for the simulation of 1D, two-phase, multicomponent flow in porous media. For these strongly nonlinear systems, traditional high order upwind schemes are impractical: Riemann solutions are not directly available when the phase behavior is complex, and the systems are weakly hyperbolic at isolated points. Relaxation schemes avoid the dependency on the eigenstructure and nonlinear Riemann solvers by approximating the original system with a strongly hyperbolic linear system. We exploit the known information about the eigenvalues to construct first order and second order variable relaxation schemes with much reduced numerical diffusion as compared to the standard relaxation formulations. The proposed second order variable relaxation scheme is competitive in accuracy and efficiency with a third order component-wise ENO reconstruction, and performs at least as well as second order component-wise TVD schemes.  相似文献   

12.
为了提高三阶WENO-Z格式在极值点处的计算精度,通过理论推导给出三阶WENO格式满足收敛精度的充分条件。采用泰勒级数展开的方式,推导给出所构造格式非线性权重的计算公式,并综合权衡计算精度和计算稳定性确定所构造格式的参数。通过两个典型的精度测试,验证了改进格式在光滑流场极值点区域逼近三阶精度。进一步选用激波与熵波相互作用和Richtmyer-Meshkov不稳定性等经典算例,证实了本文提出的改进格式WENO-PZ3相较其他格式(WENO-JS3和WENO-Z3)不仅具有较高的精度,而且降低了格式的耗散,提高了对流场结构的分辨率。  相似文献   

13.
Shock-capturing and broad-bandwidth scale resolutions are two main challenges of compressible turbulent flow simulation. To meet the rigorous requests, a novel fifth-order hybrid scheme based on a uniform hybrid framework is designed. With the help of a continuous weight operator, the new scheme combines an upwind compact scheme for smooth regions and a compact-reconstruction weighted essentially non-oscillatory scheme for discontinuous regions. Numerical analyses and canonical numerical tests confirm that the new scheme has high accuracy, spectral-like resolution property and shock-capturing capability. Besides, the new scheme shows high computational efficiency compared to the related shock-capturing schemes and hybrid ones.  相似文献   

14.
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the local- truncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases. The project supported by the China NKBRSF (2001CB409604) The English text was polished by Yunming Chen  相似文献   

15.
为了提高陀螺仪的使用精度,研究了陀螺仪漂移测试的伺服法实验技术.依托973项目,在国内首次完成了高精度单自由度静压液浮陀螺仪的伺服法实验.找到了影响小角度伺服法实验测试精度的主要误差源,即小角度伺服法实验的方法误差,通过对该误差的分析,提出了改进的小角度伺服实验方案.建立了小角度伺服法实验方法误差的仿真模型,用改进方案和原始方案分别进行了仿真和实验,结果表明改进方案同原始方案相比,陀螺仪漂移误差模型中的三项系数辨识精度均有提高.  相似文献   

16.
Construction of third-order WNND scheme and its application in complex flow   总被引:2,自引:0,他引:2  
IntroductionWiththedevelopmentofaeronauticsandaerospacetechnology ,moreandmorerequirementsarearisingforCFD (computationalfluiddynamics) .Oneoftheproblemsistodevelophigherorderaccuracyschemes.Forexample ,whenapplyingLES (largeeddysimulation)orDNS(directnumericalsimulation)methodtosimulatingturbulenceproblem ,theschemesneedthirdorderaccuracyormoreinspace .Anotherquestionistheinfluenceofgrid’sscaletotopologicalstructureofflowfield .Inordertosimulatecomplicatedflowswithseparationorturbulencec…  相似文献   

17.
高分辨率激波捕捉格式对含激波流场的数值模拟具有重要意义。通过理论推导分析了WENO-JS3格式和WENO-Z3格式的精度,发现两种格式在光滑流场区域(包含极值点处)具有相同的理论精度且均低于三阶设计精度,WENO-Z3格式由于增大了非光滑模板的非线性权重使其计算精度有所提高。在理论推导的基础上,提出了WENO-Z+3格式及其改进格式(WENO-Z+3P1和WENO-Z+3P32),且改进格式在光滑流场区域能满足所设计的三阶精度要求。选用一维平面黎曼问题及双马赫反射等经典算例,验证了本文提出的WENO-Z+3格式及其改进格式相较其他格式具有耗散低和对流场结构分辨率高的特性。  相似文献   

18.
提出了拉格朗日高阶中心型守恒气体动力学格式。用产生于当前时刻子网格密度和当前时刻网格声速的子网格压力构造了子网格力,用加权本质无震荡方法构造的高阶子网格力构造了高阶空间通量,借助时间中点通量的泰勒展开完成了高阶时间通量离散,利用动量守恒条件使得格点速度以与网格面的数值通量相容的方式计算。编制了拉格朗日高阶中心型守恒气体动力学格式,对Saltzman活塞问题进行了数值模拟,数值结果表明,拉格朗日高阶中心型守恒气体动力学格式的有效性和精确性.  相似文献   

19.
给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD Runge—Kutta方法。本文格式保持了中心差分格式简单的优点,即不需用Riemann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。  相似文献   

20.
In this paper, a high-order finite-volume scheme is presented for the one-dimensional scalar and inviscid Euler conservation laws. The Simpson's quadrature rule is used to achieve high-order accuracy in time. To get the point value of the Simpson's quadrature, the characteristic theory is used to obtain the positions of the grid points at each sub-time stage along the characteristic curves, and the third-order and fifth-order central weighted essentially non-oscillatory (CWENO) reconstruction is adopted to estimate the cell point values. Several standard one-dimensional examples are used to verify the high-order accuracy, convergence and capability of capturing shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号