首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 157 毫秒
1.
给出了一种求解双曲型守恒律的三阶半离散中心差分格式。该格式以一种推广的三阶重构为基础,同时考虑了波传播的局部速度。格式的构造方法是利用重构,先计算非一致交错网格上的均值,再将该网格均值投影回原来的非交错网格,得到新的全离散中心差分格式,该格式有半离散形式。本文半离散格式保持了中心差分格式简单的优点,即不需用R iemann解算器,避免了进行特征解耦。它具有守恒形式,数值通量满足相容性条件。数值试验结果表明该格式是高精度、高分辨率的。  相似文献   

2.
非线性双曲型守恒律的高精度MmB差分格式   总被引:1,自引:0,他引:1  
构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界面上的状态变量,并加以校正;其次,利用近似R iem ann解算子求解细小区间交界面上的数值通量,并结合高阶R unge-K u tta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的Mm B特性。然后,将格式推广到一、二维双曲型守恒方程组情形。最后给出了一、二维Eu ler方程组的几个典型的数值算例,验证了格式的高效性。  相似文献   

3.
一类高精度TVD差分格式及其应用   总被引:2,自引:0,他引:2  
构造了一维非线性双曲型守恒律的一个新的高精度、高分辨率的守恒型TvD差分格式。其构造思想是:首先,将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各细小区间交界面上的状态变量,并加以校正;其次,利用近似Riemann解计算细小区间交界面上的数值通量,并结合高阶Runge—Kutta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的TVD特性。该格式适合于使用分量形式计算而无须进行局部特征分解。通过计算几个典型的问题,验证了格式具有高精度、高分辨率且计算简单的优点。  相似文献   

4.
给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD Runge—Kutta方法。本文格式保持了中心差分格式简单的优点,即不需用Riemann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。  相似文献   

5.
提出了求解多维双曲守恒律方程组的四阶半离散格式。该方法以中心加权基本无振荡(CWENO)重构为基础,同时考虑到在R iemann扇内波传播的局部速度,从而回避了计算过程中的网格交错,建立了数值耗散较小的介于迎风格式和中心格式之间的半离散格式。本文的四阶半离散格式是Kurganov等人的三阶半离散格式的高阶推广。大量的数值算例充分说明了本文方法的高分辨率和稳定性。  相似文献   

6.
通过在单元交界面处进行高阶WENO重构,得到了一种求解双曲型守恒律方程的WENO型熵相容格式。用该格式对一维Burgers方程和Euler方程进行数值模拟,结果表明,该格式具有高精度、基本无振荡性等特点。  相似文献   

7.
HLL-HLLC格式能够克服HLLC在强激波附近的激波不稳定现象,并且保持了HLLC的低耗散特性,是一种适合更大马赫数范围的近似黎曼求解器。本文从RANS方程出发,将HLL-HLLC近似黎曼求解器结合五阶WENO重构,实现了对无粘通量的高阶离散;同时,采用完全守恒形式的四阶中心差分格式处理粘性项,建立了RANS方程的高阶数值求解格式。通过对四个经典算例,钝头体、ONERA M6机翼、DLR F6-WB翼身组合体和DLR F6-WBNP复杂外形的数值模拟,考察了两种WENO改进格式在复杂流场中的表现,研究了高阶格式的收敛特性;给出了在复杂流动中WENO自由参数的推荐值,以增强求解的收敛性。算例结果表明,本文构造的高阶格式鲁棒性好,能够显著改善激波位置和激波强度,捕获更丰富的流场细节,满足复杂工程应用需求。  相似文献   

8.
基于HLL-HLLC的高阶WENO格式及其应用研究   总被引:1,自引:0,他引:1  
HLL-HLLC格式能够克服HLLC在强激波附近的激波不稳定现象,并且保持了HLLC的低耗散特性,是一种适合更大马赫数范围的近似黎曼求解器。本文从RANS方程出发,将HLL-HLLC近似黎曼求解器结合五阶WENO重构,实现了对无粘通量的高阶离散;同时,采用完全守恒形式的四阶中心差分格式处理粘性项,建立了RANS 方程的高阶数值求解格式。通过对四个经典算例,钝头体、 ONERA M6机翼、DLR F6-WB翼身组合体和DLR F6-WBNP复杂外形的数值模拟,考察了两种WENO改进格式在复杂流场中的表现,研究了高阶格式的收敛特性;给出了在复杂流动中 WENO自由参数的推荐值,以增强求解的收敛性。算例结果表明,本文构造的高阶格式鲁棒性好,能够显著改善激波位置和激波强度,捕获更丰富的流场细节,满足复杂工程应用需求。  相似文献   

9.
满足几何守恒律的WENO格式及其应用   总被引:1,自引:0,他引:1  
对几何守恒律的来源进行了分析,发展了一种满足几何守恒律的WENO格式,并应用于翼型层流分离现象的数值模拟中。为消除网格质量影响,采用守恒型方法计算网格导数,并将标准的WENO格式分解为中心差分部分和数值耗散部分。算例计算结果表明,几何守恒律对高精度有限差分WENO格式计算结果具有重要影响,本文方法能够消除网格导数计算误差,保证来流保持性。将本文方法应用于SD7003翼型层流分离现象的数值模拟中,计算结果与文献中计算及试验数据吻合较好,同时能够精细捕捉小尺度流场结构,准确模拟翼型层流分离现象中的复杂流动过程。  相似文献   

10.
利用高精度差分格式求解了可压缩 N-S方程球头热流问题。分析了不同差分格式在对球头粘性绕流热流计算中存在的问题 ,并分析了相应的网格雷诺数。在利用高精度迎风紧致 [1 ] 格式求解粘性绕流热流问题时 ,采用 Steger-Warming[2 ]的通量分裂技术将守恒型方程中的流通向量分裂成两部分 ,在此基础上据风向构造逼近于无粘项的高精度迎风格式。对方程中的粘性部分采用中心差分格式。数值结果表明 :高精度差分格式能在较大的网格雷诺数下较好地计算球头驻点热流  相似文献   

11.
A high-order Lagrangian cell-centered conservative gas dynamics scheme is presented on unstructured meshes. A high-order piecewise pressure of the cell is intro- duced. With the high-order piecewise pressure of the cell, the high-order spatial discretiza- tion fluxes are constructed. The time discretization of the spatial fluxes is performed by means of the Taylor expansions of the spatial discretization fluxes. The vertex velocities are evaluated in a consistent manner due to an original solver located at the nodes by means of momentum conservation. Many numerical tests are presented to demonstrate the robustness and the accuracy of the scheme.  相似文献   

12.
This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time sub-cell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.  相似文献   

13.
提出了一种Godunov型中心型拉氏方法,用于求解二维柱坐标系中的可压缩多介质Euler方程组,该方法完全在体积控制体上离散,不仅保证质量、动量和总能量守恒,且该方法在二维柱坐标系中保一维球对称;并且对一维球对称问题在球对称网格划分下,精度测试表明该方法具有一阶精度,算例显示方法非常有效。  相似文献   

14.
Maire等提出了一种新型的有限体积中心型拉氏方法, 该方法大大地改善了一直困扰着一般中心型拉氏方法的虚假网格变形. 然而在计算数值流和移动网格时,该方法只应用了数值黏性较大的弱波近似(weak wave approximatedmethod, WWAM) Riemann解, 而且方法的设计表明其他类型的近似Riemann解不能简单直接地应用上去. 将体平均多流管(multifluid channel on averaged volume, MFCAV)近似Riemann解视为对WWAM的修正,成功将其应用于新型方法中, 数值实验表明应用了MFCAV 的新方法是有效的. 研究为将其他更为有效的近似Riemann解应用于该新型方法中开辟了一条道路.   相似文献   

15.
A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypoelastic constitutive model and the von Mises’ yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the presented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE).  相似文献   

16.
Developing shock-capturing difference methods   总被引:1,自引:1,他引:1  
A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.  相似文献   

17.
一类格心型ALE有限体积格式方法   总被引:1,自引:1,他引:0  
现在国内外流行的ALE有限体积格式基本上都基于交错网榕进行格式的离散.该类格武在进行重映时,速度、密度和能量需要分别进行重映计算,效率较低,而且由于速度在网格角点.而密度、能量在网格中心,重映时会出现动能和内能不协调现泉.本文在巳有格心型Lagrange有限体积格式研究的基础上,结合Abgrall R.等关于榕心型格式下的网格角点速度的计算方法,利用最小二乘法进行高阶插值多项式重构,构造了一类新的格心型的高精度Lagrangian有限体积格式,并结合有效的高精度ENO守恒重映方法,获得了一类格心型的高精度ALE有限体积格式.数值试验的结果说明本文的格式是有效的,高精度的,收敛的,并且避免了物理量的不协调现象.  相似文献   

18.
On the basis of the work [P.‐H. Maire, R. Abgrall, J. Breil, J. Ovadia, SIAM J. Sci. Comput. 29 (2007), 1781–1824], we present an entropy fixed cell‐centered Lagrangian scheme for solving the Euler equations of compressible gas dynamics. The scheme uses the fully Lagrangian form of the gas dynamics equations, in which the primary variables are cell‐centered. And using the nodal solver, we obtain the nodal viscous‐velocity, viscous‐pressures, antidissipation velocity, and antidissipation pressures of each node. The final nodal velocity is computed as a weighted sum of viscous‐velocity and antidissipation velocity, so do nodal pressures, whereas these weights are calculated through the total entropy conservation for isentropic flows. Consequently, the constructed scheme is conservative in mass, momentum, and energy; preserves entropy for isentropic flows, and satisfies a local entropy inequality for nonisentropic flows. One‐ and two‐dimensional numerical examples are presented to demonstrate theoretical analysis and performance of the scheme in terms of accuracy and robustness.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号