首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann–Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integration method can be developed and adopted to attack complex flows with different Mach numbers. HPF parallel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarily with massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuille- channel flow and pressure-driven gas flows in two-dimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of micro-scale gas flows occuring in the Micro-Electro-Mechanical System (MEMS). The project supported by the National Natural Science Foundation of China (90205009 and 10321002), and the National Parallel Computing Center in Beijing. The English text was polished by Yunming Chen.  相似文献   

2.
RANS simulations may not provide accurate results for all flow conditions. The interaction between a shock wave and a turbulent boundary layer is an example which may still be difficult to simulate accurately. Beside the inability to reproduce physical phenomena such as shock unsteadiness, the argument is put forward that the conventional numerical schemes, based on the Navier-Stokes equations, may be unable to generate a physically consistent turbulent stress tensor in the presence of large unresolved scales of motion. A large ratio between unresolved and resolved scales of motion, a sort of Knudsen number based on turbulent fluctuations, might introduce inaccuracies for which the turbulence model is not accountable. In order to improve the accuracy of RANS simulations, researchers have suggested various ad-hoc modifications to standard turbulence models which limit eddy viscosity or the turbulent stress tensor in the presence of strong gradients. Gas-kinetic schemes might be able to improve RANS predictions in shocklayers by removing or limiting the errors caused by the large scales ratio. These schemes are a class of their own; in the framework of a finite-volume or finite-elements discretizations, they model the numerical fluxes on the basis of the Boltzmann equation instead of the Navier-Stokes equations as is conventionally done. In practical terms, these schemes provide a higher accuracy and, more importantly, an in-built “multiscalar” mechanism, i.e. the ability to adjust to the size of unresolved scales of motion. This property makes them suitable for shock-capturing and rarefied flow. Gas-kinetic scheme may be coupled to a conventional RANS turbulence model; it is shown that the turbulent stress tensor is naturally adjusted as a function of the unresolved-to-resolved scales ratios and achieves a higher physical consistency than conventional schemes. The simulations shown - well-known benchmark cases with strong shock-boundary layer interactions - have been obtained with a standard two-equation turbulence model (k- ω). It is shown that the gas-kinetic scheme provides good quality predictions, where conventional schemes with the same turbulence model are known to fail.  相似文献   

3.
介绍了气体动理学格式(GKS)的基本构造原理及其在两种典型多尺度流动模拟中的应用。GKS利用介观BGK方程的跨尺度演化解来构造网格界面上的数值通量,从而发展出能随计算网格尺度变化自动切换物理模型的多尺度方法。对湍流这种宏观多尺度流动,发展了高精度GKS方法并成功用于低雷诺数湍流的直接数值模拟;为实现对高雷诺数湍流的高效精细模拟,基于拓展BGK方程和已有的RANS,LES模型建立了新型多尺度模拟框架。对跨流域稀薄流动,发展了适合大规模并行的三维统一气体动理学格式(UGKS),并建立了适合轴对称稀薄流动的UGKS。研究表明,GKS在多尺度流动高效模拟中的优异性能,具有很好的发展前景。  相似文献   

4.
A 5-point-stencil optimised nonlinear scheme with spectral-like resolution within the whole wave number range for secondary derivatives is devised. The proposed scheme can compensate for the dissipation deficiency of traditional linear schemes and suppress the spurious energy accumulation that occurs at high wave numbers, both of which are frequently encountered in large eddy simulation. The new scheme is composed of a linear fourth-order central scheme term and an artificial viscosity term. These two terms are connected by a nonlinear weight. The proposed nonlinear weight is designed based on Fourier analysis, rather than Taylor analysis, to guarantee a spectral-like resolution. Moreover, the accuracy is not affected by the optimisation, and the new scheme reaches fourth-order accuracy. The new scheme is tested numerically using the one-dimensional diffusion problem, one-dimensional steady viscous Burger’s shock, two-dimensional vortex decaying, three-dimensional isotropic decaying turbulence and fully developed turbulent channel flow. All the tests confirm that the new scheme has spectral-like resolution and can improve the accuracy of the energy spectrum, dissipation rate and high-order statistics of turbulent flows.  相似文献   

5.
In this paper, the circular function–based gas kinetic scheme (GKS), which is often applied for simulation of compressible flows, is simplified to improve computational efficiency for simulation of incompressible flows. In the original circular function–based GKS, the integral domain along the circle for computing conservative variables and numerical fluxes is usually not symmetric at the cell interface. This leads to relatively complicated formulations for computing the numerical flux at the cell interface. As shown in this work, for incompressible flows, the circle at the cell interface can be approximately considered to be symmetric. As a consequence, the simple expressions for calculation of conservative variables and numerical fluxes at the cell interface can be obtained, and computational efficiency is greatly improved. In the meanwhile, like the original circular function–based GKS, the discontinuity of conservative variables and their derivatives at the cell interface is still kept in the present scheme to keep good numerical stability at high Reynolds numbers. Several numerical examples, including decaying vortex flow, lid‐driven cavity flow, and flow past a stationary and rotating circular cylinder, are tested to validate the accuracy, efficiency, and stability of the present scheme.  相似文献   

6.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

7.
基于Boltzmann模型方程的气体运动论统一算法研究   总被引:1,自引:0,他引:1  
李志辉  张涵信 《力学进展》2005,35(4):559-576
模型方程出发,研究确立含流态控制参数可描述不同流域气体流动特征的气体分子速度分布函数方程; 研究发展气体运动论离散速度坐标法, 借助非定常时间分裂数值计算方法和NND差分格式, 结合DSMC方法关于分子运动与碰撞去耦技术, 发展直接求解速度分布函数的气体运动论耦合迭代数值格式; 研制可用于物理空间各点宏观流动取矩的离散速度数值积分方法, 由此提出一套能有效模拟稀薄流到连续流不同流域气体流动问题统一算法. 通过对不同Knudsen数下一维激波内流动、二维圆柱、三维球体绕流数值计算表明, 计算结果与有关实验数据及其它途径研究结果(如DSMC模拟值、N-S数值解)吻合较好, 证实气体运动论统一算法求解各流域气体流动问题的可行性. 尝试将统一算法进行HPF并行化程序设计, 基于对球体绕流及类``神舟'返回舱外形绕流问题进行HPF初步并行试算, 显示出统一算法具有很好的并行可扩展性, 可望建立起新型的能有效模拟各流域飞行器绕流HPF并行算法研究方向. 通过将气体运动论统一算法推广应用于微槽道流动计算研究, 已初步发展起可靠模拟二维短微槽道流动数值算法; 通过对Couette流、Poiseuille流、压力驱动的二维短槽道流数值模拟, 证实该算法对微槽道气体流动问题具有较强的模拟能力, 可望发展起基于Boltzmann模型方程能可靠模拟MEMS微流动问题气体运动论数值计算方法研究途径.   相似文献   

8.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.  相似文献   

9.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.   相似文献   

10.
The nonequilibrium steady gas flows under the external forces are essentially associated with some extremely complicated nonlinear dynamics, due to the acceleration or deceleration effects of the external forces on the gas molecules by the velocity distribution function. In this article, the gas-kinetic unified algorithm (GKUA) for rarefied transition to continuum flows under external forces is developed by solving the unified Boltzmann model equation. The computable modeling of the Boltzmann equation with the external force terms is presented at the first time by introducing the gas molecular collision relaxing parameter and the local equilibrium distribution function integrated in the unified expression with the flow state controlling parameter, including the macroscopic flow variables, the gas viscosity transport coefficient, the thermodynamic effect, the molecular power law, and molecular models, covering a full spectrum of flow regimes. The conservative discrete velocity ordinate (DVO) method is utilized to transform the governing equation into the hyperbolic conservation forms at each of the DVO points. The corresponding numerical schemes are constructed, especially the forward-backward MacCormack predictor-corrector method for the convection term in the molecular velocity space, which is unlike the original type. Some typical numerical examples are conducted to test the present new algorithm. The results obtained by the relevant direct simulation Monte Carlo method, Euler/Navier-Stokes solver, unified gas-kinetic scheme, and moment methods are compared with the numerical analysis solutions of the present GKUA, which are in good agreement, demonstrating the high accuracy of the present algorithm. Besides, some anomalous features in these flows are observed and analyzed in detail. The numerical experience indicates that the present GKUA can provide potential applications for the simulations of the nonequilibrium external-force driven flows, such as the gravity, the electric force, and the Lorentz force fields covering all flow regimes.  相似文献   

11.
IntroductionWith the development of modern industry, various pollutants discharge into the air,rivers, lakes and oceans, which makes the environmental qualities worse and has bad effectson the mankind’s health and the sustained development of industry an…  相似文献   

12.
This article provides a strategy for solving incompressible turbulent flows, which combines compact finite difference schemes and parallel computing. The numerical features of this solver are the semi-implicit time advancement, the staggered arrangement of the variables and the fourth-order compact scheme discretisation. This is the usual way for solving accurately turbulent incompressible flows. We propose a new strategy for solving the Helmholtz/Poisson equations based on a parallel 2d-pencil decomposition of the diagonalisation method. The compact scheme derivatives are computed with the parallel diagonal dominant (PDD) algorithm, which achieves good parallel performances by introducing a bounded numerical error. We provide a new analysis of its effect on the numerical accuracy and conservation features. Several numerical experiments, including two simulations of turbulent flows, demonstrate that the PDD algorithm maintains the accuracy and conservation features, while conserving a good parallel performance, up to 4096 cores.  相似文献   

13.
14.
On the basis of the mesoscopic theory of Boltzmann-type velocity distribution function, the modified Boltzmann model equation describing the one-dimensional gas flows from various flow regimes is presented by incorporating the molecular interaction models relating to the viscosity and diffusion cross-sections, density, temperature and the dependent exponent of viscosity into the molecular collision frequency. The gas-kinetic numerical method for directly solving the molecular velocity distribution function is studied by introducing the reduced distribution functions and the discrete velocity ordinate method, in which the unsteady time-splitting method and the NND finite difference scheme are applied. To study the inner flows of non-equilibrium shock wave structures, the one-dimensional unsteady shock-tube problems with various Knudsen numbers and the steady shock wave problems at different Mach numbers are numerically simulated. The computed results are found to give good agreement with the theoretical, DSMC and experimental results. The computing practice has confirmed the good precision and reliability of the gas-kinetic numerical algorithm in solving the highly nonequilibrium shock wave disturbances from various flow regimes.  相似文献   

15.
This paper presents a gas-kinetic theory based multidimensional high-order method for the compressible Naiver–Stokes solutions. In our previous study, a spatially and temporally dependent third-order flux scheme with the use of a third-order gas distribution function is employed.However, the third-order flux scheme is quite complicated and less robust than the second-order scheme. In order to reduce its complexity and improve its robustness, the secondorder flux scheme is adopted instead in this paper, while the temporal order of method is maintained by using a two stage temporal discretization. In addition, its CPU cost is relatively lower than the previous scheme. Several test cases in two and three dimensions, containing high Mach number compressible flows and low speed high Reynolds number laminar flows, are presented to demonstrate the method capacity.  相似文献   

16.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We note in this study that the Navier-Stokes equations, when expressed in streamfunction-vorticity form, can be approximated to fourth-order accuracy with stencils extending only over a 3 x 3 square of points. The key advantage of the new compact fourth-order scheme is that it allows direct iteration for low-to-medium Reynolds numbers. Numerical solutions are obtained for the model problem of the driven cavity and compared with solutions available in the literature. For Re ? 7500 point-SOR iteration is used and the convergence is fast.  相似文献   

18.
采用辛算法研究了Hamilton体系下介电弹性体圆形薄膜的动力学响应。首先,将该问题引入Hamilton对偶变量体系,借助Legendre变换,给出系统的广义动量和Hamilton函数,通过对Hamilton函数作用量的变分,得到Hamilton体系下的正则方程。其次,对于得到的正则方程给出了辛Runge-Kutta的计算格式。最后,采用二级四阶辛Runge-Kutta算法对动力学系统进行了数值求解,和四级四阶经典Runge-Kutta算法进行对比,结果表明,二级四阶辛Runge-Kutta算法具有保能量以及长时间数值稳定的优势,同时说明四级四阶经典Runge-Kutta算法对于步长依赖的局限性。  相似文献   

19.
In this study, a parallel implementation of gas-kinetic Bhatnagar–Gross–Krook method on two-dimensional hybrid grids is presented. Boundary layer regions in wall bounded viscous flows are discretised with quadrilateral grid cells stretched in the direction normal to the solid surface while the rest of the flow domain is discretised by triangular cells. The parallel solution algorithm on hybrid grids is based on the domain decomposition using METIS, a graph partitioning software. The flow solutions obtained in parallel significantly improve the computation time, a significant deficiency of gas-kinetic methods. Several validation test cases presented show the accuracy and robustness of the method developed.  相似文献   

20.
A multigrid acceleration technique developed for solving the three-dimensional Navier–Stokes equations for subsonic/transonic flows has been extended to supersonic/hypersonic flows. An explicit multistage Runge–Kutta type of time-stepping scheme is used as the basic algorithm in conjunction with the multigrid scheme. Solutions have been obtained for a blunt conical frustum at Mach 6 to demonstrate the applicability of the multigrid scheme to high-speed flows. Computations have also been performed for a generic High-Speed Civil Transport configuration designed to cruise at Mach 3. These solutions demonstrate both the efficiency and accuracy of the present scheme for computing high-speed viscous flows over configurations of practical interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号