首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用建立在晶体塑性理论基础上的晶体塑性有限变形计算方法,针对铜单晶试样单轴拉伸过程中晶体滑移在试样表面留下的滑移带痕迹进行了数值研究.作者利用三维有限元模拟不同取向铜单晶试样的拉伸变形,通过晶体塑性滑移面与试样表面交线的几何分析,得到了试样在不同晶向拉伸下不同滑移系启动造成的试样表面滑移痕迹,并对数值计算的试样表面滑移...  相似文献   

2.
基于有限变形晶体塑性本构关系及三维体胞模型,采用有限元的方法,分析了在不同应力三维度、不同罗德参数、不同滑移系开动及不同加载取向下,单晶高温合金中铸造微孔洞扩长的力学行为。分析结果表明:累积剪切应变在铸造微孔洞的扩长中起着很重要的作用,大的累积剪切应变对应高含量的铸造微孔洞;开动滑移系族的类型对铸造微孔扩长的影响不容忽视,故准确的确定开动滑移系的类型,对于评估单晶热端部件的寿命至关重要。由于不同的取向具有不同的Schmid因子、弹性模量及开动滑移系,单晶高温合金中的铸造微孔洞的扩长还与取向密切相关,因此根据热端部件工况,合理的选择其取向是有必要的。  相似文献   

3.
微结构演化对镁合金材料力学性能有着显著的影响,为了揭示镁合金宏观塑性各向异性特性与非均匀孪生变形的关系,开展了不同路径下的单轴加载试验以及采用含滑移、孪生机制的晶体塑性本构模型对试验条件下的镁合金变形行为进行数值模拟研究。文中本构模型描述了滑移与孪生变形机制以及晶格转动的机制,同时研究采用三维微结构代表性有限元模型,其包含晶粒尺寸、晶向和晶界倾角等微结构参数。研究结果表明,轧制镁合金具有强烈的宏观塑性各向异性行为,并对这种镁合金塑性各向异性行为的模拟结果以及多晶织构的模拟演化结果与试验测量进行对比,结果都基本吻合。对孪生非均匀变形模拟分析表明,镁合金宏观塑性各向异性行为与滑移、孪生变形机制的不同启动组合紧密相关,同时多晶体内应力的非均匀分布受到孪生变形的严重影响。而不同晶粒尺寸的晶粒所发生的孪生变形有比较大的差异,造成孪晶变体在晶粒内的分布极不均匀。本研究可为通过微结构的合理配置来设计和控制材料的力学性能提供理论依据.  相似文献   

4.
详细介绍了镍基合金的晶体塑性本构模型,在Asaro大变形晶体塑性框架下,详细介绍了镍基合金的晶体塑性本构模型,在Asaro大变形晶体塑性框架下,引入了运动硬化规律,考虑了温度和应变率对晶体塑性变形的影响,通过针对每个滑移系考虑屈服准则和流动规律建立了晶体塑性模型. 对积分过程进行了推导,通过编写ABAQUS材料用户子程序(UMAT), 实现本构模型的有限元积分算法. 在此基础上模拟了DD3镍基单晶合金在单轴拉伸和循环载荷下的响应,并与实验数据进行了对比. 利用该模型可以很好地模拟镍基单晶所具有的各向异性特性,体现了镍基单晶在循环载荷作用下的拉-压不对称性.   相似文献   

5.
基于有限变形晶体塑性本构关系及轴对称体胞模型,采用有限元的方法,分析了在不同取向偏角及不同滑移系开动,单晶高温合金中铸造微孔洞扩长的力学行为。分析结果表明:取向偏角对铸造微孔洞的扩长具有重要的意义,但对铸造微孔洞的形状改变影响不大,为改善单晶高温合金热端部件的疲劳、蠕变性能,控制晶体的取向偏角是很必要的;滑移系族开动的类型对铸造微孔洞的扩长有很大的影响,这种影响与Schmid因子、加载的取向相关,为更加准确地分析单晶高温热端部件的寿命,确定滑移系族开动类型至关重要。  相似文献   

6.
赵伯宇  胡伟平  孟庆春 《力学学报》2021,53(5):1355-1366
材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源, 从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程. 本文基于晶体塑性理论, 从滑移系的受力和变形出发研究材料的细观损伤, 建立了考虑滑移面分解正应力的细观损伤模型, 为晶体材料解理断裂的分析提供了新方法. 首先, 在晶体弹塑性变形构型的基础上引入损伤变形梯度张量的概念, 从变形运动学着手建立了考虑损伤能量耗散的本构方程, 并推导了塑性流动方程与损伤演化方程; 然后, 建立了相应的数值计算方法, 给出了应力与状态变量的更新算法, 推导了Jacobian矩阵的表达式; 接着, 以$[100]$取向的单晶铜材料为例, 通过有限元计算与试验结果的对比, 并采用粒子群优化算法标定了11个材料细观参数; 最后, 将所提细观损伤模型应用于RVE单轴拉伸过程的模拟, 得到了考虑损伤影响的应力应变曲线, 并分析了材料的塑性流动与损伤演化过程. 结果表明, 本文所提模型能够计算材料在受载过程中的损伤累积效应, 合理反映晶体材料的细观损伤机理.   相似文献   

7.
单晶镍基合金具有优异的耐高温、高强、高韧等性能, 这些力学性能受制造过程引入的次级取向和冷却孔的影响. 已有研究大多关注单孔薄板的变形机理和力学性能, 而工程中应用的往往是多孔薄板, 当前亟需阐明多孔的塑性滑移带变形机理、次级取向效应以及冷却孔引起的应变梯度效应. 文章采用基于位错机制的非局部晶体塑性本构模型对含冷却孔镍基单晶薄板的单拉变形进行了数值模拟. 此模型基于塑性滑移梯度与几何必需位错的关系引入了位错流动项, 因此可有效刻画非均匀变形过程中的应变梯度效应. 为了全面揭示含孔镍基薄板的次级取向效应, 系统研究了[100]和[110]取向(两种次级取向)下镍基薄板的单拉变形行为, 并重点探究了在两种次级取向下冷却孔数量对薄板塑性行为的影响. 此外, 还分析了镍基合金板变形过程中各个滑移系上分切应力变化、主导滑移系开动以及几何必需位错密度的演化过程, 并讨论了塑性滑移量及其分布特征对不同次级取向镍基合金板强度的影响. 研究表明, 单孔和多孔的[110]薄板抗拉强度均低于[100]薄板, 多孔薄板的塑性变形过程比单孔薄板更为复杂且受次级取向影响更大, 并且发生滑移梯度位置主要位于冷却孔附近以及塑性滑移带区域. 研究结果可为工程中镍基合金的设计和服役提供理论指导.   相似文献   

8.
粘塑性损伤模型模拟准超塑性单轴拉伸行为   总被引:1,自引:0,他引:1  
发展了Chaboche粘塑性本构模型的大变形隐式算法,用损伤(DM)和无损伤(NDM)模型模拟准超塑性单轴拉伸。发现变形过程可分为三个阶段:均匀变形、颈缩发展、断裂破坏阶段。DM可准确模拟前两个阶段变形,NDM只能较好地模拟均匀变形阶段,表明DM可以较精确地描述稳定发展的动态过程。由于有限元方法只能描述连续介质,因此对于断裂破坏阶段,NDM模拟载荷大于试验结果,DM的载荷小于试验结果,这是由高应变速率敏感性造成。DM能够描述试验中出现地多处颈缩现象,局部应变速率分布随时间演化反映了颈缩发展程度。严重颈缩部位的距离代表着超塑性变形能力,距离越大,抗颈缩能力越好。  相似文献   

9.
因其优异的高温力学性能,镍基单晶高温合金在航空航天和能源等领域得到了广泛的应用.镍基单晶高温合金优异的高温性能来源于其特有的两相微结构.基于代表体胞模型及分块均匀化方法,以位错密度为主要内变量,发展了一个包含两相微结构和位错演化信息的单晶镍基高温合金塑性行为的本构模型.该本构模型充分考虑了镍基单晶合金中位错在基体相和沉淀增强相中的多种演化机制,例如,基体位错八面体滑移、立方滑移、位错攀移、交滑移、位错弓出、位错切过沉淀增强相以及位错Kear-Wilsdolf(K-W)锁形成与解锁等.在商用有限元软件ABAQUS的框架下,编制了UMAT用户材料子程序.利用该用户子程序,对单晶和多晶镍基高温合金在不同温度、不同加载方向下的单调塑性、循环塑性、蠕变等典型行为进行了计算模拟.结果表明:该晶体塑性本构模型能"统一地"刻画镍基高温合金在不同温度、不同方向下的多种变形行为,并与实验结果具有良好的一致性.  相似文献   

10.
晶体塑性变形离散滑移模型及有限元分析   总被引:1,自引:0,他引:1  
基于韧性单晶体实验现象,建立了描述晶体塑性变形的离散滑移模型.该模型的主要特点是:晶体滑移变形在宏观上是不均匀的,滑移带的分布是离散的.利用晶体塑性理论对模型进行了有限变形有限元分析,计算结果揭示了晶体滑移的离散行为,模拟的应力 应变曲线与实验曲线相吻合  相似文献   

11.
Single crystal constitutive equations based on dislocation density (SCCE-D) were developed from Orowan’s strengthening equation and simple geometric relationships of the operating slip systems. The flow resistance on a slip plane was computed using the Burger’s vector, line direction, and density of the dislocations on all other slip planes, with no adjustable parameters. That is, the latent/self-hardening matrix was determined by the crystallography of the slip systems alone. The multiplication of dislocations on each slip system incorporated standard 3-parameter dislocation density evolution equations applied to each slip system independently; this is the only phenomenological aspect of the SCCE-D model. In contrast, the most widely used single crystal constitutive equations for texture analysis (SCCE-T) feature 4 or more adjustable parameters that are usually back-fit from a polycrystal flow curve. In order to compare the accuracy of the two approaches to reproduce single crystal behavior, tensile tests of single crystals oriented for single slip were simulated using crystal plasticity finite element modeling. Best-fit parameters (3 for SCCE-D, 4 for SCCE-T) were determined using either multiple or single slip stress–strain curves for copper and iron from the literature. Both approaches reproduced the data used for fitting accurately. Tensile tests of copper and iron single crystals oriented to favor the remaining combinations of slip systems were then simulated using each model (i.e. multiple slip cases for equations fit to single slip, and vice versa). In spite of fewer fit parameters, the SCCE-D predicted the flow stresses with a standard deviation of 14 MPa, less than one half that for the SCCE-T conventional equations: 31 MPa. Polycrystalline texture simulations were conducted to compare predictions of the two models. The predicted polycrystal flow curves differed considerably, but the differences in texture evolution were insensitive to the type of constitutive equations. The SCCE-D method provides an improved representation of single-crystal plastic response with fewer adjustable parameters, better accuracy, and better predictivity than the constitutive equations most widely used for texture analysis (SCCE-T).  相似文献   

12.
有限变形下多晶晶体塑性模型算法及应用   总被引:4,自引:0,他引:4  
用Sanna和Zacharia^[1]所提出的延性单晶本构模型的积分算法和Taylor多晶模型假设研究了时间步长和硬化模型的选取对多晶集合体的应力应变响应和织构演化的影响。该算法是利用变形梯度乘法分解获得弹性变形梯度演化方程,用增量迭代法积分该方程,显式更新各滑移上的临界分切剪应力。算例的结果表明该算法具有时间步大,计算效率高的特点,另外,不同硬化模型的选取对多晶集合体应力应变响应的预测有明显的影响但对织构演化的预测影响不大。  相似文献   

13.
For modeling the constitutive properties of viscoelastic solids in the context of small deformations, the so-called three-parameter solid is often used. The differential equation governing the model response may be derived in a thermodynamically consistent way considering linear spring-dashpot elements. The main problem in generalizing constitutive models from small to finite deformations is to extend the theory in a thermodynamically consistent way, so that the second law of thermodynamics remains satisfied in every admissible process. This paper concerns with the formulation and constitutive equations of finite strain viscoelastic material using multiplicative decomposition in a thermodynamically consistent manner. Based on the proposed constitutive equations, a finite element (FE) procedure is developed and implemented in an FE code. Subsequently, the code is used to predict the response of elastomer bushings. The finite element analysis predicts displacements and rotations at the relaxed state reasonably well. The response to coupled radial and torsional deformations is also simulated.  相似文献   

14.
A new constitutive equation for solid propellant with the effects of aging and viscoelastic Poisson’s ratio is proposed. Effects of thermo-oxidative aging and viscoelastic Poisson’s ratio are considered in this comprehensive constitutive equation with two sets of reduced time system coping with the time and temperature dependence. In order to simulate the single and combined effects of aging and viscoelastic Poisson’s ratio, constitutive equation is rewritten into an incremental form and implemented in the user subroutine UMAT at the platform of finite element code ABAQUS. Detailed procedure for acquiring the parameters in constitutive equation is introduced and conducted for the subsequent applied analysis. Two typical loading cases during the service life of solid rocket motor and four sets of combined constitutive models are simulated. Von Mises strain and stress distribution and their changes versus time are utilized as the main analysis index. The results show that the effects of aging and viscoelastic Poisson’s ratio or their combinations will improve or decrease the level and change the distribution of Von Mises strain and stress in varying degrees.  相似文献   

15.
The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.  相似文献   

16.
An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.  相似文献   

17.
含能单晶微纳米力学性能试验研究及数值表征   总被引:1,自引:0,他引:1  
利用微纳米压痕实验测定β-HMX 单晶(010) 晶面和α-RDX 单晶(210) 晶面的力学性能参数和微观破坏特征,并利用数值拟合确定了含能单晶的部分本构参数. 通过微纳米压痕实验连续刚度法(CSM) 得到HMX 单晶和RDX 单晶的弹性模量和硬度,RDX 单晶的硬度和模量都大于HMX 单晶,其硬度值均表现出一定的尺寸效应. 利用原子力显微镜(AFM) 分析了HMX 单晶和RDX 单晶的微观破坏机理,裂纹随着载荷的增大生成并扩展,裂纹面产生方向为晶体的最易解理破坏方向. 利用ABAQUS 有限元软件进行了纳米压痕数值模拟,结合微纳米压痕实验加卸载曲线,选取了合适的含能单晶塑性损伤本构模型的损伤本构参数.   相似文献   

18.
单晶体和双晶体微观层次变形行为的有限元分析   总被引:1,自引:0,他引:1  
从微观层次上研究金属材料的变形行为,将位错引入到本构关系中,用硬化函数描述材料的硬化规律,考虑了变形的率相关性,采用三维模型用大变形有限单元法对单晶体在单向拉伸载荷和循环载荷作用下的变形行为、双晶体在单向拉伸作用下滑移系的开动进行了模拟计算,得到了与实验一致的计算结果。  相似文献   

19.
The elastic/crystalline viscoplastic constitutive equation, based on a newly proposed hardening-softening evolution equation, is introduced into the dynamic-explicit finite element code “Itas-Dynamic.” In the softening evolution equation, the effective distance and the angle between each slip system of a crystal are introduced to elucidate the interaction between the slip systems, which causes a decrease of dislocation density. The polycrystal sheet is modeled by Voronoi polygons, which correspond to the crystal grains; and by the selected orientations, which can relate to the texture, they are assigned to the integration points of the finite elements. We propose a direct crystal orientation assignment method, which means that each integration point of finite element has an assigned orientation, and its orientation can be rotated independently. Therefore, this inhomogeneous polycrystal model can consider the plastic induced texture development and subsequent anisotropy evolution. The parameters of the constitutive equation are identified by uni-axial tension tests carried out on single crystal sheets. Numerical results obtained for sheet tensions are compared with experimental ones to confirm the validity of our finite element code. Further, we investigate the following subjects: (1) how the initial orientation of single crystal affects slip band formation and strain localization; (2) how the grain size and particular orientations of the grain affect the strain localization in case of a polycrystal sheet. It is confirmed that the orientation of a single crystal can be related to the primary slip system and the deformation induced activation of that system, which in turn can be related to the slip band formation of the single crystal sheet. Further, in case of a polycrystal sheet, the larger the grain size, the more the strain localizes at a specific crystal, which has the particular orientation. It is confirmed through comparisons with experiments that our finite element code can predict the localization of strain in sheets and consequently can estimate the formability of sheet metals.  相似文献   

20.
Substructure models for vein matrix and persistent slip band (PSB) structures are extracted from a uniaxial mixtures model that was developed to simulate cyclic loading experiments on nickel single crystals oriented for single slip. Reverse magnetostriction is included as well. These substructure models are implanted in a single crystal plasticity framework with fully anisotropic elasticity. The resulting constitutive models are incorporated in finite element models to simulate the process of PSB macroband formation and propagation. Perturbation elements (PEs), elements assigned with PSB properties, are used as the loci for PSB macroband nucleation. Transition of elements with vein matrix properties to elements with PSB properties is triggered at integration points by a shear stress criterion applied on slip systems. The resulting finite element models successfully demonstrate the process of PSB formation and propagation, and plastic strain amplitude partitioning between vein matrix and PSB macrobands. The effect of model boundary constraints, strain increment dependence, mesh sensitivity, PE distribution, specimen axis misorientation, and PSB volume fraction generated is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号