首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
捷联惯性导航系统的旋转调制技术是一种自校正方法,它能将惯性测量单元中陀螺仪的常值漂移和加速度计的零偏调制成周期性的信号,通过积分运算消除这些周期信号对系统的影响。从而使得惯导系统在不使用外部信息的条件下,自动补偿由陀螺漂移和加速度计零偏引起的导航误差,提高系统精度。从单轴旋转调制原理入手,详细推导分析了IMU绕任意转轴做单轴旋转时,陀螺和加速度计常值漂移、安装误差、刻度系数误差在单轴旋转下的误差表现形式,基于最大限度消除陀螺和加速度计常值漂移的原则,给出了最优的转轴选取方案。进行了大量仿真和实验,证明了提出的旋转方案的有效性。  相似文献   

2.
混合式光纤陀螺惯导系统在线自主标定   总被引:1,自引:0,他引:1  
混合式光纤陀螺惯导系统IMU的安装误差、光纤陀螺的漂移及标度因数等参数会随着时间发生变化,对系统误差产生影响,使系统在使用一段时间之后精度发生变化,因而需要重新标定。在混合式系统中,通过台体旋转调制,惯性元件常值漂移误差对系统的影响得到抑制,但安装误差和标度因数误差对系统的影响无法得到完全调制,这些误差会与地速及旋转角速率耦合,引起锯齿形速度误差,降低了系统的各项性能。针对混合式惯导系统,建立了IMU误差模型,设计出一种在线自主标定方法,并进行了可观性分析。该方法采用"速度+位置"匹配,对惯导系统30项相关误差项进行在线标定。系统实验结果表明,系统级在线标定参数较分立式标定参数在导航定位精度上提高了半个数量级。  相似文献   

3.
单轴旋转惯导系统转轴陀螺常值漂移综合校正方法   总被引:2,自引:0,他引:2  
为提高单轴旋转惯导系统长时间的导航工作精度,根据单轴旋转惯导误差方程阐述了单轴旋转惯导的自动补偿原理,指出转轴方向陀螺漂移是引起系统位置误差发散的最主要的误差源。在动基座条件下,建立了转轴陀螺常值漂移与系统经度误差之间的数学模型,根据经度误差即可估计转轴方向的陀螺常值漂移,实现系统转轴方向陀螺的常值漂移综合校正。利用计算机仿真方法验证了所给数学模型的合理性,利用建立的数学模型,只要获得一次准确的位置信息,即可对系统位置进行重调,并且实现对系统转轴方向陀螺漂移的估计与补偿,实现系统的综合校正。转轴方向陀螺漂移经过补偿后,其精度由0.002(°)/h提高到0.0005(°)/h,并给出了对系统进行综合校正的较佳时机。  相似文献   

4.
水平初始对准误差对旋转IMU导航系统的精度影响   总被引:1,自引:0,他引:1  
针对旋转IMU导航系统中水平初始对准误差对系统导航精度的影响进行了分析和研究。以加速度计为例,分析了利用旋转自动补偿部分器件零偏的基本原理。然后详细推导了水平初始对准误差在IMU旋转过程中对导航精度产生的影响,指出了与常用导航方式的不同之处;在理论分析的基础上,进行了数学仿真和试验验证。结果表明,尽管通过旋转可以补偿部分惯性器件误差,但由于惯性器件的水平决定了初始对准误差,而初始对准误差对系统精度的影响在旋转过程中被激励出来,从而降低了系统的导航精度;因此,如果希望通过IMU旋转在长时间内获得更高的导航精度,需有效地降低系统初始对准误差。  相似文献   

5.
以单轴恒速偏频激光陀螺系统为研究对象,在分析IMU传感器误差的基础上,建立了合理有效的静基座初始对准滤波器模型。针对系统连续旋转运行的特性,提出了简洁适用的滤波器估计误差检验方法,利用自主设计的原理样机验证了恒速偏频技术的实际可行性,对滤波算法进行了实验测试。实验结果表明,初始对准滤波算法能够稳定有效地估计IMU传感器误差,且等效东陀螺漂移估计精度优于0.0004(°)/h,该系统具有很高的工程应用潜力。  相似文献   

6.
激光陀螺捷联惯性组合的全温度标定方法   总被引:8,自引:1,他引:8  
给出了激光陀螺捷联惯性组合(IMU)的误差模型,研究了一种利用双轴带温控箱速率转台的参数标定方法,标定出了IMU在各种环境温度下的模型参数,通过温度补偿有效地减小了IMU的导航误差。试验结果表明。该方法标定精度较高,适用于中等精度IMU的参数标定。  相似文献   

7.
旋转IMU在光纤捷联航姿系统中的应用   总被引:7,自引:1,他引:7  
惯性测量单元输出信号的精度直接影响捷联惯性导航系统的精度,为了提高捷联系统的精度,以舰船光纤捷联惯性航姿系统为应用对象,采用了双轴旋转机构连续匀速旋转IMU的系统方法,把惯性测量单元输出信号中的漂移误差调制成正弦信号,通过捷联算法中的积分运算可以有效地消除陀螺和加速度计中的漂移误差,从而有效地提高捷联惯性航姿系统的精度,并进行了系统仿真实验。仿真结果表明:经过旋转以后的IMU输出信号误差较传统非旋转方法可以减小一个数量级。基于双轴旋转IMU的系统方法可以有效地减小IMU输出信号漂移误差和提高捷联惯性航姿系统的精度。  相似文献   

8.
分析了四频差动激光陀螺漂移信号的特性,将陀螺输出的漂移误差信号分为常值漂移误差和随时间变化的一次项、二次项漂移误差,并据此建立陀螺漂移误差模型,分别对陀螺漂移进行零次拟合、一次拟合及二次拟合.针对这些模型结合寻北推导了误差的补偿算法,并通过寻北实验精度比较,验证了不同误差模型的补偿效果.实验结果表明,就本文实验所用陀螺,含二次项误差的模型寻北精度较高,使寻北精度从零次拟合模型的1密位降低到0.5密位.  相似文献   

9.
单轴旋转对惯导系统误差特性的影响   总被引:9,自引:0,他引:9  
分析了单轴旋转惯导系统自动补偿的基本原理,对陀螺和加速度计常值漂移、安装误差、标度因数误差等因素在单轴旋转下的调制情况进行了研究。通过仿真分析了转动速度对各种误差的影响规律,指出了实际系统旋转速度和方式的选择要综合考虑陀螺的常值漂移和标度因数误差的影响。利用激光捷联惯导系统在实验室中进行了单轴旋转IMU实验,其定位精度优于1nm/24h。研究结果可以为单轴旋转惯导系统的进一步优化和工程设计提供理论参考。  相似文献   

10.
探讨了动基座对准中的一个新的问题,初始装订姿态误差对Kalman滤波器估计陀螺漂移的影响,对该问题进行了试验和仿真。结果表明,利用速度匹配进行初始对准,初始装订姿态误差对两个水平陀螺漂移的估计值产生的影响,主要来自于系统初始装订姿态的精度和Kalman滤波器系统模型的精度,如果要保证滤波器足够的估计精度,应该首先从系统模型上解决。  相似文献   

11.
捷联惯导系统的精度是导航的关键.传统的捷联惯导算法受惯性传感器更新速率限制,其精度和实时性在高动态下受到极大影响.在研究传统捷联惯导算法的基础上,建立了统一的捷联惯导微分方程,并提出了基于一次采样的四阶龙格库塔捷联算法,降低了惯性器件采样频率对捷联解算周期的限制.利用设计的基于DSP的半物理仿真系统验证表明,该算法能有效满足高动态下捷联惯导算法的实时性要求,定位精度提高约1倍,具有重要的工程应用价值.  相似文献   

12.
针对低成本IMU的系统误差难以现场快速标定问题,提出了一种无需任何外部设备辅助的多位置旋转现场标定方法。该方法通过比力加速度与重力建立加速度计的误差模型,基于动态旋转以及标定后的加速度建立导航方程实现陀螺仪误差建模,使用改进的LM算法,实现低成本IMU误差参数的快速标定。实验结果表明:该方法可以有效地标定出加速度计和陀螺仪的安装误差、缩放因子和零偏误差,极大地简化了标定的过程,标定补偿后的IMU原始数据质量大幅提高,在100 s的静态导航试验中,x、y、z的定位精度分别从2541.547m、895.191m、7267.507m提升至80.229m、41.430m、99.832m。  相似文献   

13.
一种惯性测量单元非正交安装的单轴转位方法   总被引:1,自引:0,他引:1  
针对单轴旋转式捷联惯导系统中旋转轴方向惯性器件误差导致系统误差积累的问题,提出一种惯性测量单元非正交安装的单轴转位方法,该方法不但可消除旋转轴垂直方向惯性器件误差对导航精度的影响,而且可减小旋转轴方向惯性器件误差引起的导航误差。基于单轴旋转调制原理,推导了非正交安装方法和正交安装方法的陀螺常值漂移和加速度计零偏在单轴旋转下引起的姿态误差,并对其进行分析,结果表明,在陀螺仪和加速度计常值漂移及零偏相同的情况下,非正交安装方法与正交安装方法相比,安装斜角为10°时72 h的定位误差降低约50%。  相似文献   

14.
小波分析在捷联惯导陀螺信号滤波中的应用   总被引:5,自引:0,他引:5  
介绍了小波变换和多分辨率分析理论。针对捷联惯导系统中光纤陀螺输出信号的特点,对其进行小波变换,去除信号中高频部分的噪声,从而抑制了陀螺的随机漂移。通过仿真实验,肯定了使用小波分析算法对陀螺输出信号进行滤波消噪处理的可行性。在实际用于捷联惯导系统中的实验结果表明,有效地提高了系统的精度。  相似文献   

15.
引入系统级旋转自补偿技术可以提高惯性导航系统的精度,该技术是指对整个IMU施加旋转运动从而改变元器件的工作方式,使元件误差得到调制,在进行积分时调制后的误差在一个周期内得到抵消.在捷联式惯导系统中,当载体处于动态时,标度因数误差和安装误差与惯性传感器的输出产生耦合,旋转调制对系统的补偿效果将受到影响.改进的途径一是提高元件标度因数稳定性,减小系统安装误差角;二是隔离载体运动,即减小陀螺仪和加速度计的输出值.本文通过对比分析在静态和动态条件下双轴连续旋转调制式惯导的误差方程,解释了载体运动对旋转调制效果的影响机理,并通过数字仿真验证了载体运动对系统补偿效果的影响.分析和仿真发现,在静态和动态条件下旋转调制都可以提高系统的精度,而在静态条件下或者在通过环架结构隔离了载体运动后旋转调制的效果相对于动态下有较为明显的提高.  相似文献   

16.
在全温范围内应用的光纤陀螺,其输入轴失准角随温度的变化是影响光纤陀螺惯性系统性能的重要指标之一。特别是在大角速率或者高精度应用时,失准角的变化误差甚至超过零偏漂移误差和标度因数误差。采用温度补偿技术是一种提升光纤陀螺温度性能的有效方法,其中建立精确的温度模型是关键。提出了一种连续旋转的光纤陀螺全温失准角快速建模补偿方法。基于单轴速率转台的连续旋转,可以有效识别光纤陀螺失准角在全温范围内的变化拐点,提高建模和补偿的精度。试验结果表明,某型光纤陀螺全温输入轴失准角变化约14″,补偿后全温输入轴失准角变化小于1″,精度提高了一个数量级以上。在高精度光纤陀螺惯性系统中,该方法可用于指导光纤陀螺失准角的实时温度补偿技术研究及工程实现。  相似文献   

17.
激光陀螺漂移的数据建模和滤波   总被引:13,自引:0,他引:13  
在对激光陀螺漂移数据建立时间序列模型的基础上,采用卡尔曼滤波算法对激光陀螺的漂移数据进行了处理,并用频谱分析和Allan 方差分析的方法,对滤波的结果进行了分析,表明此方法能有效地提高激光陀螺的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号