首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
粉煤灰填充聚氯乙烯复合材料的摩擦学特性研究   总被引:5,自引:0,他引:5  
熊党生 《摩擦学学报》2003,23(2):154-157
用热压方法制备了不同粉煤灰粒度及含量的聚氯乙烯(PVC)复合材料,在MM—200型环—块摩擦磨损试验机上评价了复合材料同淬火45^#钢在干摩擦条件下对摩时的摩擦磨损性能,用扫描电子显微镜及光学显微镜观察分析磨损表面.结果表明:当粉煤灰质量分数为40%时,填充PVC复合材料的硬度最高,相应的磨损率最低,比纯PVC的磨损率低2个数量级以上;粉煤灰粒度越小,复合材料的硬度越高,耐磨性越好.  相似文献   

2.
以纳米Al2O3、纳米TiO2及聚四氟乙烯(PTFE)作为复合填料,利用热压成型方法分别制备了纳米Al2O3-PTFE及纳米TiO2-PTFE填充聚醚醚酮(PEEK)复合材料;采用销-盘式摩擦磨损试验机考察了纳米微粒对复合材料摩擦学性能的影响;采用扫描电子显微镜观察分析了复合材料磨损表面形貌.结果表明:纳米微粒和PTFE作为复合填料可以显著改善PEEK的摩擦学性能,其改善效果同纳米微粒的填充量相关;当纳米填料的质量分数相同时,PEEK/PTFE/nano-TiO02复合材料的摩擦磨损性能明显优于PEEK/PTFE/nano-Al2O3复合材料;含纳米Al2O3的复合材料磨损表面呈现严重塑性变形特征,且塑性变形程度随纳米微粒含量增加而增大,而含纳米TiO2的复合材料磨损表面塑性变形轻微.  相似文献   

3.
基于Gurtin-Murdoch表/界面理论和广义自洽方法,获得了考虑界面应力时纳米涂层纤维增强复合材料有效反平面剪切模量的闭合形式解。讨论了涂层的壁厚、力学性能和界面性能对复合材料有效性能的影响。结果显示:在纳米尺度范围内,复合材料的有效反平面剪切模量受纳米涂层的尺寸影响显著。纤维体积分数一定时,涂层壁厚越大,纤维半径越小,有效反平面剪切模量与经典结果偏差越大。纤维刚度和涂层界面性能对复合材料有效模量的影响也取决于涂层刚度,非常软或非常硬的涂层都大大限制了纤维刚度对复合材料有效模量的贡献,过高的涂层刚度屏蔽了纳米复合材料表/界面效应的影响。  相似文献   

4.
纳米Al2O3和Fe2O3填充尼龙PA1010的摩擦磨损行为   总被引:7,自引:3,他引:7  
采用模具挤压成型方法制备了纳米Al2O3和Fe2O3填充PA1010尼龙复合材料,采用MM-200型摩擦磨损试验机考察了所制备的尼龙复合材料在干摩擦条件下同45#钢对摩时的摩擦磨损行为。研究结果表明,填充纳米Al2O3使得PA1010尼龙复合材料的摩擦系数增大,而填充纳米Fe2O3使得摩擦系数降低;纳米Al203和Fe2O3填充尼龙复合材料的耐磨性能优于尼龙;当纳米填料的质量分数从10%提高到20%时,纳米Fe2O3填充尼龙的磨损量增大,纳米Al2O3填充尼龙的磨损量无明显变化,2种填料填充尼龙复合材料的摩擦系数变化不大.纳米Fe2O3填充尼龙复合材料同45#钢对摩时主要呈现粘着磨损和轻微疲劳磨损特征,而纳米Al2O3填充尼龙复合材料呈现脆性疲劳开裂特征。纳米Fe2O3填充尼龙复合材料在偶件磨损表面形成的转移膜更加均匀和连续,故其减摩抗磨性能优于纳米Fe2O3填充尼龙复合材料。  相似文献   

5.
纳米TiO2和SiO2填充尼龙的摩擦磨损行为   总被引:4,自引:2,他引:4  
制备了纳米SiO2和纳米TiO2填充PA1010尼龙复合材料,测定了复合材料的力学性能,并采用MM-200型摩擦磨损试验机考察了尼龙复合材料在干摩擦条件下同45#钢配副时的摩擦磨损行为.结果表明:填充纳米颗粒可以提高尼龙复合材料的力学性能;纳米SiO2和纳米TiO2作为填料可以提高PA1010的耐磨性,降低摩擦系数,其中纳米颗粒的最佳质量分数为10%;纳米颗粒填充尼龙1010复合材料同45#钢配副时主要呈现粘着和疲劳磨损特征.  相似文献   

6.
选择3种具有不同抗磨性能的纳米组分,制备了具有不同界面特性的聚合物/无机纳米复合材料;考察了纳米复合材料的减摩抗磨性能和机理,探讨了关于纳米复合材料润滑油添加剂的摩擦学功能设计准则。结果表明:对聚合物与无机纳米组分界面进行设计优化后能明显提高纳米复合材料的摩擦学性能。实现聚合物与无机纳米组分界面的优化设计后,聚合物与无机纳米组分之间具有更好的相容性,无机纳米组分在聚合物基体中分布更均匀;当聚合物基体在摩擦热和剪切作用下熔融分解后,裸露出来的具有高活性的无机纳米组分可在摩擦副接触表面形成具有良好摩擦学性能的表面膜。  相似文献   

7.
利用粉末冶金法制备纳米碳管/铝基复合材料,研究不同纳米碳管含量对复合材料硬度和稳态摩擦磨损行为的影响,采用扫描电子显微镜观察复合材料的磨损表面形貌,并对其磨损机制进行探讨.结果表明:随着纳米碳管质量分数的增加,复合材料的硬度呈现先增大而后减小的趋势,含质量分数为2%的纳米碳管复合材料硬度比铝增加约80%;复合材料的摩擦系数逐渐降低,磨损率先减小而后增大;含质量分数为1%的纳米碳管复合材料磨损机制为磨粒磨损和粘着磨损,而含质量分数为2%的纳米碳管复合材料以剥层磨损和疲劳磨损为主.  相似文献   

8.
采用热压成型工艺制备了纳米ZnO填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察复合材料磨损表面形貌.结果表明:填充15%~20%的纳米ZnO可以显著改善UHMWPE的摩擦磨损性能;复合材料的磨损机理随纳米粒子含量的增加而变化,纯UHMWPE的磨损机理主要为粘着磨损和疲劳磨损,随着复合材料中纳米粒子含量增加,疲劳磨损特征逐渐消失,当其纳米粒子含量大于15%时,其磨损机理主要为粘着磨损;复合材料磨损表面出现了贫ZnO区和富ZnO区,且富ZnO区以"岛"的形式分布在贫ZnO区中.  相似文献   

9.
中空纳米微球填充复合材料的有效力学性能   总被引:2,自引:0,他引:2  
邹波  卢子兴 《力学学报》2009,41(2):265-273
中空纳米微球可作为复合材料填充体使用. 与相同粒径下的实心纳米颗粒相比,中空纳米微球密度更低,存在表/界面应力效应的面积更大,由此导致的不同力学行为值得人们关注和研究. 目的是研究表/界面应力对中空纳米微球填充复合材料力学行为的影响. 首先,基于广义自洽原理,利用考虑表/界面应力影响的四相球模型导出了中空纳米微球填充复合材料在单向载荷作用下的弹性场,获得了纳米复合材料有效弹性模量的闭合形式解. 然后,分析了纳米复合材料存在的尺度相关性. 算例结果表明,有效弹性常数和环向应力与经典解答不同, 取决于表/界面性能、纳米中空微球粒径和壁厚. 该结论对于中空纳米微球复合材料具有指导意义.   相似文献   

10.
纳米颗粒增强镍基MEMS器件材料的蠕变性能研究   总被引:1,自引:0,他引:1  
利用同步辐射LIGA微铸复合工艺,将纳米氧化物增强颗粒复合到微电子机械系统(MEMS)结构材料中。制作了专用夹具,采用微力材料试验机测量了纳米Al2O3颗粒增强镍基复合材料的强度为1GPa;将恒加载速率/载荷法和恒载荷法相结合,利用纳米压痕仪测量了该材料的室温蠕变速率敏感指数m。结果表明,LIGA复合技术得到的纳米颗粒增强镍基复合材料具有较高的强度;MEMS器件材料在室温下会发生蠕变;材料在相同压深下最大载荷不随加载速率而改变,加载段粘弹性和粘塑性变形极少;主要由局部高应力导致压痕蠕变;材料的蠕变速率敏感指数m值为0.004,说明纳米Al2O3颗粒可有效增强基体材料的抗蠕变能力;且不同恒.P/P下获得的m值基本相同,表示此种材料对加载速率不敏感。  相似文献   

11.
Poly(vinyl chloride) (PVC)/di-isononyl phthalate systems with PVC content of 45.5 (PVC8) and 70.4 wt% (PVC6) were prepared by a hot roller at 150 °C and press molded at 180 °C. The dynamic viscoelasticity and elongational viscosity of PVC8 and PVC6 were measured in the temperature range from 150 to 220 °C. We have found that the storage and loss shear moduli, G′ and G″, of PVC8 and PVC6 exhibited the power-law dependence on the angular frequency ω at 190 and 210 °C, respectively. Correspondingly, the tan δ values did not depend on ω. These temperatures indicate the critical gel temperature T gel of each system. The critical relaxation exponent n obtained from these data was 0.75 irrespective of PVC content, which was in agreement with the n values reported previously for the low PVC concentration samples. These results suggest that the PVC gels of different plasticizer content have a similar fractal structure. Below T gel, the gradual melting of the PVC crystallites takes place with elevating temperature, and above T gel, a densely connected network throughout the whole system disappears. Correspondingly, the elongational viscosity behavior of PVC8 and PVC6 exhibited strong strain hardening below T gel, although it did not show any strain hardening above T gel. These changes in rheological behavior are attributed to the gradual melting of the PVC crystallites worked as the cross-linking domains in this physical gel, thereby inapplicability of the of time–temperature superposition for PVC/plasticizer systems.  相似文献   

12.
This paper deals with the application of Acousto-ultrasonics, in conjunction with Pattern Recognition and Classification techniques, to the identification of residual impact properties of a class of polymeric material, namely, Polyvinylchloride (PVC). PVC specimens of different low-energy repeated impact damage states are processed by Acousto-ultrasonics (AU) to retrieve AU signals in the form of digitalized records. These AU signals are grouped as distinct classes, each pertaining to a known level of repeated impact damage. Describing features of these AU signals are used to build Pattern Recognition (PR) Classifiers. These classifiers are used to identify unknown damage states in other PVC specimens by classifying the retrieved AU signals as belonging to one of the classes. The obtained results indicate that Acousto-ultrasonics in combination with Pattern Recognition and Classification techniques can be used for the quantitative non-destructive identification of damage states in PVC specimens of unknown low-energy repeated impact conditions.  相似文献   

13.
Oscillatory rheological experiments at different temperatures and over a wide range of frequencies have been used to investigate the gelation process and, more particularly, the sol–gel transition of various poly(vinyl chloride) (PVC) plastisols. The sol–gel transition process was found to be universal with respect to the temperature and solid volume fraction according to the similarity of the fractal structure in PVC plastisols. The variation of the gel time (t gel) with temperature for any composition of PVC plastisols was predicted from the Dickinson’s model (E. Dickinson, J Chem Soc Faraday Trans, 93:111–114, 1997). Dynamic viscoelastic properties of PVC plastisols have also been studied as a function of temperature that allowed us to follow the gelation process of various plastisols. Thus, the influence of the type and concentration of PVC resins in gelation process was investigated. The variation of the complex shear modulus at a constant frequency was depicted by a master curve regarding the dependence of the moduli on PVC concentrations.  相似文献   

14.
In order to predict the mechanical performance of the polyvinyl chloride(PVC) at a high operating temperature,a series of short-term tensile creep tests(onetenth of the physical aging time) of the PVC are carried out at 63 C with a small constant stress by a dynamic mechanical analyzer(DMA).The Struik-Kohlrausch(SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time.A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters(the initial creep compliance,the characteristic retardation time,and the shape factor) determined by the aging time.It is shown that the momentary creep compliance curve of the PVC at 63 C can be very well fitted by the SK formula for each aging time.However,the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures,and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinates have shown a nonlinear phenomenon.Moreover,the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case.Finally,the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.  相似文献   

15.
Zirconium phosphate containing silver was chosen as antibacterial particles in preparing antibacterial particles/PVC composite. The effect of surface property of the antibacterial particles and of their filler content on the properties of antibacterial particles/PVC composite was studied. The effect of the interracial compatibility on mechanical properties of the composite was also discussed. Experimental results showed that the antibacterial PVC composite had good antibacterial property, reaching almost 100% bacteriostatic level at an antibacterial powder filler content of 1.5phr.  相似文献   

16.
The elastic properties of a carbon nanotube (CNT) reinforced composite are affected by many factors such as the CNT–matrix interphase. As such, mechanical analysis without sufficient consideration of these factors can give rise to incorrect predictions. Using single-walled carbon nanotube (SWCNT) reinforced Polyvinylchloride (PVC) as an example, this paper presents a new technique to characterize interphase regions. The representative volume element (RVE) of the SWCNT–PVC system is modeled as an assemblage of three phases, the equivalent solid fiber (ESF) mimicking the SWCNT under the van der Waals (vdW) forces, the dense interphase PVC of appropriate thickness and density, and the bulk PVC matrix. Two methods are proposed to extract the elastic properties of the ESF from the atomistic RVE and the CNT-cluster. Using atomistic simulations, the thickness and the average density of interphase matrix are determined and the elastic properties of amorphous interphase matrix are characterized as a function of density. The method is examined in a continuum-based three-phase model developed with the aid of molecular mechanics (MM) and the finite element (FE) method. The predictions of the continuum-based model show a good agreement with the atomistic results verifies that the interphase properties of amorphous matrix in CNT-composites could be approximated as a function of density. The results show that ignoring either the vdW interaction region or the interphase matrix layer can bring about misleading results, and that the effect of internal walls of multi-walled carbon nanotubes (MWCNTs) on the density and thickness of the dense interphase is negligible.  相似文献   

17.
碳纳米管的力学性能及碳纳米管复合材料研究   总被引:11,自引:0,他引:11  
辜萍  王宇  李广海 《力学进展》2002,32(4):563-578
对碳纳米管力学行为和碳纳米管复合材料的研究文献进行了综述.首先介绍了碳纳米管结构稳定性和力学性能的研究进展,包括理论模拟和实验的研究结果.结果表明,碳纳米管有着优异的力学性能,其在复合材料应用方面有着巨大的潜力.然后,系统地总结了碳纳米管在增强高分子材料、金属材料和陶瓷材料方面的应用,指出外场力传递效应是值得关注的课题.最后,对该领域工作做了一些讨论和展望.   相似文献   

18.
A general expression for the energy-density function of sequentially laminated composites is derived. For the class of neo-Hookean composites in the limit of small deformations well-known results for linear transversely isotropic composites are recovered. However, it is shown that under large deformations these composites are not isotropic. Transversely isotropic composites are obtained with sequentially-coated composites in which the next rank composite is constructed by lamination of the previous composite with thin layers of the matrix phase. The transverse behavior of this sequentially-coated composite is neo-Hookean with shear modulus in the form of the Hashin-Shtrikman bounds for the corresponding class of linear composites. Comparison of the behaviors of these composites with recent estimates for transversely isotropic composites reveals good agreement up to relatively large deformations and volume fractions of the inclusion phase.  相似文献   

19.
This paper presents the results of a parametric experimental study of free swirling flow at the exit of a flat-vane axial swirler. A total of 16 data sets were acquired by combining four swirler vane angles (22°, 29°, 50.5°, and 58.3°) and four exit nozzles of different diameters (30, 40, 52, and 76 mm). Sophisticated pressure probes consisting of precise microphones and a two-component LDV system were used to investigate the effect of these geometrical parameters on swirling flow regimes characterized by the swirl number. Particular attention was paid to the precessing vortex core (PVC) phenomenon observed at the exit of the swirler nozzle. It has been shown that by varying the vane angle and the diameter of the exit nozzle, it is possible to independently control the swirl number value and the occurrence of a PVC. A distinct correlation has been found between the PVC-induced pressure pulsations detected by acoustic probes and the tangential velocity fluctuations measured by LDV. The use of microphones provides a quick way to measure the frequency response of swirl flow in a wide range of geometries and flow configurations. The PVC effect does not occur at low subcritical values of the integral swirl number (S < 0.5) and in the case of strong swirl flow (Sg = 0.9 and 1.2) in the absence of constriction by the nozzle (De/D0 = 1). The disappearance of the PVC effect for strong swirl flow without constriction is due to the extreme displacement of the flow to the nozzle walls. The absence of a PVC in the flow was inferred not only from measurements of the frequency response of the flow over a wide range of Re numbers, but also from the absence of specific markers in velocity RMS distributions. Measurement results are used to derive an empirical correlation of the integral swirl number and the Strouhal number with a modified geometric swirl number. This allows a generalization of the frequency characteristics of swirling flows with a PVC for flat-vane axial swirlers, which are widely used in engineering.  相似文献   

20.
Conclusions From an overall analysis of the above results it appears that the rheological properties of plasticized PVC are governed, below about 200 °C, not only by the usual parameters (composition, temperature, molecular weight) but also by the crystallinity of the polymer. Recent estimations of the crystallinity degree in commercial PVC samples vary from 3% (45) to about 10% (46), the actual value depending on the thermal history of the sample.Apparently even small values of the crystallinity degree can affect rather strongly the rheological behaviour of plasticized PVC in the rubbery and flow regions.For the fractions here investigated, the fractional precipitation procedure used to carry out the separation (1) leads probably to a fractionation based not only on molecular weight but also on stereoregularity (47), the result being that the fractions precipitated firstly are more polydisperse and more crystallizable. In dilute solution, they give easily aggregates (1), stable up to relatively high temperatures (2).The dynamic-mechanical data discussed above (fig. 1) as well as the anomalies presented by the rheological results (fig. 7 to 12) can be therefore explained on the basis of a model in which supermolecular structures linked together by crystalline bonds are present in the samples.The marked dependence of PVC mechanical properties on the annealing temperature described recently byAndrews andKazama (48) seems to give considerable support to such a model.Presented at the Jahrestagung der Deutschen Rheologen, Berlin-Dahlem, 20.–22. Mai 1968.The authors are indebted to Mr.Sangiovanni and Mr.Zinelli for most of the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号