首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用粉末冶金技术制备了纳米SiC陶瓷颗粒(0.0%、1.0%、2.2%和3.4%,质量分数,后面未作特殊说明,均为质量分数)强化的CoCrMo基高温抗磨复合材料,对复合材料的相组成及高温摩擦学性能进行了系统性研究. 在室温至1 000 ℃范围内利用球-盘式高温摩擦试验机测试了材料的高温摩擦学性能. 结果表明:复合材料的基体主要由γ (fcc)和ε (hcp)合金相构成,加入纳米SiC后复合材料出现了MoCr相,这有利于复合材料硬度的提高;纳米SiC提高了复合材料的硬度,同时降低了复合材料的密度;摩擦系数与纳米SiC的含量和温度相关,摩擦系数随纳米SiC含量的增加而增大,室温至800 ℃的摩擦系数整体呈下降趋势,1 000 ℃时含2.2%和3.4% SiC的复合材料具有较低的摩擦系数;高温环境下复合材料的抗磨损性能随纳米SiC含量的增加而显著提高;复合材料的磨损机理在不同温度下存在差异,随着温度升高,磨损机理逐渐由磨粒磨损和塑性变形转变为氧化磨损. 室温至1 000 ℃范围内CoCrMo-2.2% SiC具有较优异的高温抗磨损性能,这主要归因于复合材料的高硬度和磨损表面完整的氧化物润滑层.   相似文献   

2.
蒙脱土填充聚丙烯复合材料的摩擦磨损行为研究   总被引:4,自引:1,他引:3  
采用熔体插层法在双螺杆挤出机上制备出含不同质量分数的有机蒙脱土(OMMT)PP复合材料,对OMMT/PP复合材料的力学性能和摩擦磨损性能进行研究,利用扫描电子显微镜观察磨损表面性貌.结果表明:复合材料的硬度和拉伸强度随OMMT含量增加先增加后减小;Ⅴ型缺口冲击强度逐渐上升;摩擦系数和磨损率先降低而后升高;当OMMT质量分数为1.5%时,复合材料的硬度和拉伸强度最大,磨损率为PP的65%,摩擦系数降低8.5%;随着OMMT含量增加(0%~4%),复合材料的磨损形式主要为粘着磨损、磨粒磨损以及粘着磨损与磨粒磨损的混合形式.  相似文献   

3.
Al2O3纤维增强铝基复合材料干滑动磨损机制的研究   总被引:1,自引:0,他引:1  
采用销-盘式磨擦磨损试验机研究了Al2O3纤维增强铝基复合材料的干滑动摩擦磨损性能,理论分析了磨损率与Al2O3纤维体积分数的变化规律,探讨了在干滑动摩擦条件下复合材料的磨损机制.结果表明:在干滑动摩擦条件下,随着Al2O3纤维体积分数增加,磨损率急剧下降,当纤维体积分数为9%时达到最小值,尔后略有回升;当纤维体积分数小于5%时,可用Archard模型对复合材料的磨损率进行理论预测;磨损亚表层中基体金属沿滑动方向的塑性流动是铝基复合材料磨损的基本特征,Al2O3纤维可有效地阻止基体的塑性流动,提高复合材料的耐磨性;随着滑动距离增加,摩销前端的变形量增大,甚至出现形变坑,将从复合材料中剥离出坚硬Al2O3磨粒并镶嵌于其中,很容易在铝基复合材料表面产生犁沟,从而加速铝基复合材料的磨损.  相似文献   

4.
采用乳液插层法制备聚甲基丙烯酸甲酯/纳米有机改性蒙脱土复合材料,采用X射线衍射仪表征复合材料结构,考察有机改性蒙脱土(OMMT)含量对复合材料摩擦磨损性能的影响,并通过扫描电子显微镜观察分析复合材料磨损表面形貌.结果表明:所制备的纳米片状分散型复合材料的磨损率随OMMT含量增加先减小而后增加;摩擦系数随OMMT含量的变化趋势则相反,当OMMT含量为5%时,复合材料的磨损率最小,为PMMA的25%;当OMMT含量为6%时,摩擦系数最大,比PMMA增加8%.复合材料的磨损机制为粘着磨损和磨粒磨损,随着OMMT含量不同,2种机理的表现程度有所变化.  相似文献   

5.
米碳管增强铜基复合材料的滑动磨损特性研究   总被引:4,自引:4,他引:0  
以纳米碳管作为增强体制备了铜基复合材料,采用MM-220型环-块摩擦磨损试验机考察了该复合材料的滑动磨损行为,并观察分析了复合材料的组织结构、磨损表面形貌及磨屑组成.结果表明,其磨损过程存在跑合和稳态磨损2个阶段,在稳态磨损阶段主要发生氧化磨损,同时也存在磨粒磨损.工作环境影响复合材料的耐磨性.纳米碳管体积分数在12%~15%时,可以较好地发挥其润滑和阻止基体氧化的作用.  相似文献   

6.
采用热压烧结法制备了纯聚醚醚酮(PEEK)及MWCNT/PEEK复合材料.通过表征发现:导热系数、密度、硬度及热稳定性随多壁碳纳米管(MWCNT)含量的增加而增大.系统研究了载荷、速度及不同MWCNT含量对复合材料摩擦学性能和磨损机理的影响.结果表明,MWCNT可显著降低复合材料的摩擦系数和磨损率.在固定转速200 r/min,载荷为40和80 N,MWCNT质量分数为1%条件下,摩擦系数和磨损率最低,摩擦系数分别为0.241和0.235,磨损率分别较纯PEEK降低了60%和56%.当载荷增加到100 N,MWCNT质量分数为2%时,摩擦系数最低,磨损率较纯PEEK降低89%.固定载荷40 N,转速为400 r/min时,1%MWCNT/PEEK复合材料的磨损率最低,较纯PEEK降低了89%.当转速增大至600 r/min,2%MWCNT/PEEK复合材料的磨损率较纯PEEK降低了85%.固定转速200 r/min、载荷为40 N,MWCNT的质量分数较低时(<2%),MWCNT/PEEK复合材料的磨损机理主要是黏着磨损,MWCNT的质量分数(≥2%)较高时,磨损机理发生黏着磨损...  相似文献   

7.
在 MM- 2 0 0型环块磨损试验机上 ,以 HT2 0 0材料为摩擦偶件 (环 ) ,研究了含不同体积分数 Ti C颗粒的原位合成 Ti Cp/ Al复合材料表层的摩擦磨损性能 .结果表明 :当 Ti C体积分数小于 2 0 %时 ,随着体积分数增加熔覆层的磨损量逐渐减小 ;而当体积分数大于 2 5 %时 ,随着体积分数的增加熔覆层的磨损量反而逐渐增大 ;与 DL 7和 ZL 10 4材料相比 ,当颗粒体积分数为 2 0 %时 ,复合材料表层的磨损量只有 DL 7材料的 2 6 .7% ,ZL 10 4材料的 5 6 .5 % ;此外 Ti C颗粒体积分数对摩擦系数的影响不大  相似文献   

8.
采用真空热压法制备MoSi2增强镍基合金复合材料,并考察了其在室温下同Si3N4陶瓷球配副时的摩擦磨损性能.结果表明:加入MoSi2增强相可以显著提高镍基合金复合材料的显微硬度及其摩擦磨损性能;当添加MoSi2质量分数为30%时,复合材料的显微硬度最高、磨损率最低;当MoSi2质量分数分别为20%时,复合材料的摩擦系数最小;随着MoSi2含量增加,复合材料的磨损机理逐渐由塑性变形向脆性微断裂转变,其原因在于MoSi2硬质颗粒对镍基合金基体具有明显的弥散强化效应,并能够在摩擦磨损过程中起到有效的承载作用.为了保证镍基合金复合材料的摩擦磨损性能处于最佳状态,MoSi2增强相的最佳含量应控制在30%.  相似文献   

9.
为实现铜基复合材料性能的有效调控,采用激光选区熔化成形制备了单元尺寸分别为5.00、3.75、2.75、1.75和0.75 mm的18Ni300空间结构增强体,然后在挤压铸造条件获得了具有不同增强体分布的18Ni300空间结构增强铜基复合材料. 研究了复合材料的微观组织、硬度、摩擦磨损性能和磨损表面形貌. 结果表明:随着空间结构单元尺寸的减小,复合材料增强体体积分数不断增加,硬度和耐磨性提高. 结构单元尺寸为0.75 mm时,复合材料增强体体积分数为13.35%,硬度达到HBW120,为铜基体硬度的1.71倍;载荷40 N、线速度0.75 m/s、磨损时间25 min 条件下的体积磨损量为35.4 mm3,比铜基体磨损量降低58%. 由于增强体的作用,复合材料的磨损机制由纯铜的黏着磨损转变为磨粒磨损.   相似文献   

10.
采用MM - 2 0 0型摩擦磨损试验机考察了载荷及对摩偶件表面SiC粒度对超高分子量聚乙烯及其纳米Al2 O3填充复合材料摩擦磨损性能的影响 ,利用扫描电子显微镜观察磨损表面形貌并分析了其磨损机理 .结果表明 :纳米Al2 O3 可以提高超高分子量聚乙烯的硬度及抗磨粒磨损性能 ;随着载荷的增大 ,超高分子量聚乙烯及纳米填充复合材料的磨损加剧 ;纳米Al2 O3 填充超高分子量聚乙烯复合材料的摩擦系数较超高分子量聚乙烯的略有增大 ;纳米Al2 O3 含量的增加有利于超高分子量聚乙烯复合材料抗磨粒磨损性能的提高 ;偶件表面喷涂SiC粒度的大小对超高分子量聚乙烯及其纳米Al2 O3 填充复合材料的磨损影响较大  相似文献   

11.
碳纳米管增强铜基复合材料的载流摩擦磨损性能研究   总被引:1,自引:1,他引:0  
采用粉末冶金方法制备了碳纳米管增强铜基复合材料(CNT/Cu),碳纳米管的体积分数分别为0%、5%、10%、12%和15%,在HST100载流摩擦磨损试验机上考察了有无电流2种状态下复合材料的摩擦磨损性能.结果表明:有电流条件下的摩擦系数和磨损率均比无电流条件下大,且表面磨损严重;载流条件下,随碳纳米管体积分数的增加,复合材料的摩擦系数和磨损率均降低,主导磨损形式由电气磨损逐渐过渡到黏着磨损.碳纳米管在复合材料中起到增强、减摩的作用.  相似文献   

12.
碳纳米管改性聚四氟乙烯复合材料的摩擦磨损性能研究   总被引:22,自引:5,他引:17  
评价了用不同含量碳纳米管(CNTs)改性聚四氟乙烯(PTFE)复合材料的力学性能,利用MM-200型摩擦磨损试验机研究了CNTs含量对PTFE复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面及磨屑形貌,并探讨其磨损机理.结果表明:CNTs能够提高PTFE复合材料的硬度和冲击强度,在本文研究范围内,当CNTs的质量分数为7%时,PTFE复合材料的力学性能最佳;CNTs能够增加PTFE复合材料的摩擦系数、降低其磨损量,当其质量分数为10%时,PTFE复合材料的耐磨损性能最佳.纤维状碳纳米管可以阻止PTFE带状结构的大面积破坏,以及在摩擦过程中于偶件表面能够形成转移膜并隔离复合材料与偶件的直接接触是其减摩耐磨作用的主要原因.  相似文献   

13.
碳纤维毡增强铝基复合材料的摩擦磨损性能研究   总被引:8,自引:0,他引:8  
采用压挤渗透工艺制备了新型碳纤维毡增强铝基复合材料,在MG-2000型高速高温摩擦磨损试验机上考察了其摩擦磨损性质,结果表明:碳纤维毡增强铝基复合材料的摩擦磨损特性明显估于基体合金;复合材料经历由稳定磨损向严重磨损的转化;在稳定磨损阶段,复合材料的磨损表面存在由金属氧化物和碳膜共同构成的复合固体润滑膜,从而有效地改善复合材料的摩擦磨损性能。  相似文献   

14.
采用粉末冶金方法制备出了Cu-12.5Ni-5Sn-石墨自润滑复合材料,通过改变石墨的含量来研究该复合材料的力学性能和在不同摩擦试验温度下的摩擦磨损性能,采用SEM和Raman分析磨损表面,进而讨论复合材料的摩擦、磨损和润滑机制. 结果表明:复合材料的硬度和屈服强度随着石墨含量的增加而逐渐降低;温度对不同石墨含量的复合材料的摩擦磨损性能有显著的影响,在室温下,石墨质量分数为1%和3%的石墨复合材料的摩擦系数和磨损率明显小于5%石墨复合材料;在300 ℃下,石墨质量分数为3%时,复合材料的摩擦磨损性能最好;在500 ℃下,石墨质量分数为5%的石墨复合材料的摩擦磨损性能最好. 在室温下,复合材料具有较好自润滑性的主要原因是形成了几乎光滑连续的石墨润滑膜. 在300和500 ℃下,由金属氧化物和石墨组成的混合物润滑膜是复合材料保持自润滑性的主要原因.   相似文献   

15.
摩擦片的摩擦磨损性能严重影响盘式制动器的使用寿命和客车行驶的安全性.以灰铸铁HT250圆盘为对偶件,利用销盘式摩擦磨损试验机,在不同温度下对树脂基复合材料摩擦片的摩擦系数和磨损率进行研究,同时应用JSM-651010LA型扫描电子显微镜、HGP-7500型光电直读光谱仪和HXD-1000TMSC型显微硬度测试仪对摩擦磨损表面进行观察和测量,表征其摩擦表面的微观形貌和测定微观硬度,进而推断其磨损机理.结果表明:在不同温度下,平均摩擦系数和磨损率均随着温度的升高先增加后降低;随着温度升高,摩擦层的面积和其微观硬度的变化和平均摩擦系数、磨损率的变化规律基本相同;在高温摩擦磨损过程中,黏着磨损占主导作用,同时伴随着切削磨损.  相似文献   

16.
粘结剂特性对填充树脂复合材料摩擦学性能的影响   总被引:2,自引:0,他引:2  
采用酚醛树脂、丁腈橡胶改性酚醛树脂和聚四氟乙烯(PTFE)作为粘结相,通过填充一定配比的石墨、焦炭及碳黑制备了3种树脂基复合材料电刷试样,并在MM-200型摩擦磨损试验机上对比考察了复合材料试样与铜对摩时的摩擦磨损性能,结果表明,与未改性的酚醛树脂基复合材料相比,改性酚醛树脂基复合材料由于韧性提高和硬度降低,因而磨损加剧;但相应的偶件铜环的磨损有所减轻,PTFE基复合材料具有良好的综合性能,偶件铜环的磨损亦较小,因此是一种潜在的高性能电刷复合材料。  相似文献   

17.
碳纳米管增强镍基复合镀层的形貌及摩擦磨损行为研究   总被引:30,自引:4,他引:26  
利用碳纳米管作为增强相制备了镍基复合镀层 ,并对其表面形貌和摩擦磨损性能进行了探讨 .结果表明 :碳纳米管均匀地嵌镶于基体中 ,且端头露出 ,覆盖于基体表面 ;镍基复合镀层具有优良的耐磨性和自润滑性 ,可以显著改善金属表面的耐磨和减摩性能 ;复合镀层优良的耐磨和减摩性能归因于碳纳米管的超强超韧特性和自润滑性能 ,碳纳米管以网络和缠绕形态分布于复合镀层基体中 ,使复合镀层在摩擦磨损过程中不易脱落拨出  相似文献   

18.
李长虹 《摩擦学学报》2004,24(6):572-575
采用粉末冶金技术制备了Al2O3/Cu石墨复合材料;采用MM-200型摩擦磨损试验机考察了石墨对Al2O3/Cu基金属陶瓷复合材料摩擦磨损性能和硬度的影响;采用扫描电子显微镜分析了复合材料磨损表面形貌.结果表明:Al2O3/Cu基复合材料的摩擦系数随石墨含量的增加而降低,当石墨含量大于1.0%后,摩擦系数降低明显;当石墨含量低于3%时,Al2O3/Cu基复合材料的磨损体积损失随石墨含量的增加而降低;当石墨含量低于2.0%时,石墨对Al2O3/Cu基复合材料的硬度无明显影响;当石墨含量超过3.0%后,Al2O3/Cu基复合材料的硬度随石墨含量的增加迅速降低;此外,石墨使得Al2O3/Cu基复合材料磨损表面的微裂纹减少、裂纹长度缩短;当石墨含量达到2.5%时,复合材料磨损表面微裂纹消失.这是由于石墨在磨损表面形成固体润滑膜,从而降低摩擦力并减少裂纹源所致.  相似文献   

19.
纳米Al2O3填充聚四氟乙烯摩擦磨损性能的研究   总被引:52,自引:9,他引:43  
利用MM-200型摩擦磨损试验机考察了填料含量及载荷对纳米Al2O3填充PTFE复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察分析磨损表面形貌及磨损机理,结果表明,纳米Al2O3可以提高PTFE的耐磨性,但Al2O3会导致严重的塑性变形,并且Al2O3含量越高,塑性变形越严重,当Al2O3的质量分数为10%时,填充PTFE复合材料的磨损最小;随着载荷的增大,填充PTFE的磨损增加,填充PTFE  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号