首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
刘璐琪  高云  张忠 《力学进展》2011,41(1):15-25
碳纳米管具有优异的力、电、热、光学等功能特性, 如何在宏观尺度上充分发挥和利用碳纳米管的优异性能是科学家和工程技术人员普遍关注的一个热点. 宏观碳纳米管聚集体是推动碳纳米管应用研究发展的一个重要途径和手段. 系统综述了碳纳米管纤维、碳纳米管薄膜以及碳纳米管阵列等宏观聚集体制备技术方面的最新研究进展, 重点关注了聚集体的力学性能, 并结合我们自身的研究工作, 预测了碳纳米管聚集体在复合材料领域的应用和发展前景以及未来发展中可能的机遇和挑战.   相似文献   

2.
由复合材料构成的板结构一直以来受到很大关注,其中功能梯度碳纳米管增强复合材料(functionally graded carbon nanotube-reinforced composite,FG-CNTRC)具有异常优越的力学性能,使得诸多学者展开了对功能梯度碳纳米管增强复合材料板结构力学行为的研究.本文以FG-CN...  相似文献   

3.
碳纳米管改性聚四氟乙烯复合材料的摩擦磨损性能研究   总被引:17,自引:5,他引:17  
评价了用不同含量碳纳米管(CNTs)改性聚四氟乙烯(PTFE)复合材料的力学性能,利用MM-200型摩擦磨损试验机研究了CNTs含量对PTFE复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面及磨屑形貌,并探讨其磨损机理.结果表明:CNTs能够提高PTFE复合材料的硬度和冲击强度,在本文研究范围内,当CNTs的质量分数为7%时,PTFE复合材料的力学性能最佳;CNTs能够增加PTFE复合材料的摩擦系数、降低其磨损量,当其质量分数为10%时,PTFE复合材料的耐磨损性能最佳.纤维状碳纳米管可以阻止PTFE带状结构的大面积破坏,以及在摩擦过程中于偶件表面能够形成转移膜并隔离复合材料与偶件的直接接触是其减摩耐磨作用的主要原因.  相似文献   

4.
基于分子动力学(MD)模拟方法,建立了碳纳米管/硫化天然橡胶复合材料体系模型,采用ReaxFF势函数,模拟了不同碳纳米管(CNT)含量的复合材料的拉伸过程.通过计算复合材料体系的自由体积分数、均方位移及回转半径,分析了材料基本微观性质和碳纳米管团聚的机制,计算结果与实验相符.通过碳纳米管与硫化天然橡胶界面能的计算,发现在加载过程中系统总势能的变化主要由硫化天然橡胶基体引起,其中非键能起主导作用;碳纳米管由于其自身力学性能较好,且与天然橡胶分子链相互作用产生界面能,导致材料力学性能提升,材料的屈服应力随碳纳米管含量的增加而显著升高.  相似文献   

5.
功能梯度碳纳米管增强复合材料是一种新一代的先进复合材料.在这种材料中,碳纳米管作为增强体在空间位置上梯度排布.功能梯度碳纳米管增强复合材料的力学行为已成为近年来材料科学与工程科学的研究热点.本文对功能梯度碳纳米管增强复合材料结构的建模与分析的研究进展进行评述,集中讨论功能梯度碳纳米管增强复合材料梁、板、壳在各种载荷条件下,边界条件下和环境条件下的线性和非线性弯曲、屈曲和后屈曲、振动和动力响应.文中所列成果可以看作是进一步研究的基石.最后,提出需要进一步研究的方向.  相似文献   

6.
沈惠申 《力学进展》2016,(1):478-505
功能梯度碳纳米管增强复合材料是一种新一代的先进复合材料。在这种材料中,碳纳米管作为增强体在空间位置上梯度排布。功能梯度碳纳米管增强复合材料的力学行为已成为近年来材料科学与工程科学的研究热点。本文对功能梯度碳纳米管增强复合材料结构的建模与分析的研究进展进行评述,集中讨论功能梯度碳纳米管增强复合材料梁、板、壳在各种载荷条件下,边界条件下和环境条件下的线性和非线性弯曲、屈曲和后屈曲、振动和动力响应。文中所列成果可以看作是进一步研究的基石。最后,提出需要进一步研究的方向。  相似文献   

7.
碳纳米管作为导电相在机敏复合材料中广泛应用,但碳纳米管为团簇材料,在基体中很难均匀分散。本文考虑碳纳米管的非均匀分布特性,提出了计算碳纳米管复合材料电导率的数值方法。通过引入随机谐和函数,建立了碳纳米管体积分数的三维随机场模型。基于细观力学的有效介质理论、Mori-Tanaka方法和H-S界限理论,考虑碳纳米管之间的隧穿效应,发展了复合材料微小体积单元的电导率计算方法。在此基础上,构建了考虑碳纳米管非均匀分布的复合材料等效电导率三维有限元计算模型。数值分析结果与试验值能够很好吻合,表明这一方法可以准确计算碳纳米管复合材料的电导率。本文进一步分析了碳纳米管非均匀分布对复合材料电导率的影响。  相似文献   

8.
在发现碳纳米管后不久,对于这些有趣结构的力学性质--包括高强度、高硬度、低密度和结构的完美性的理论预测,使人们认识到它们可能具有理想的科技应用价值.对这些预测的实验验证或个别验伪以及大量基于不同模型的计算机模拟方法,使得逾10年来对碳纳米管力学的理解日趋深入但远未达到尽头.本文回顾了理论预测,并对这种微小结构的观察和操作中经常用到的富有挑战性的实验技术进行了讨论.略述了采用的计算方法包括从头算法量子力学模拟、经典分子动力学和连续介质模型.多尺度和多物理模型的发展和模拟工具自然而然作为连接基础科学问题和工程应用的结果而出现,而这个主题仍然正在抓紧研究中.这里介绍了研究此主题的一些方法.注意力主要集中于研究力学性质的揭示方面,如杨氏模量、弯曲刚度、屈曲准则、拉伸和压缩强度.最后,讨论了利用这些性质的几个令人兴奋的应用例子,包括纳米绳束、填充的纳米管、纳米机电系统、纳米传感器和纳米管增强复合材料,引用了349篇参考文献. 图41参349  相似文献   

9.
使用分子动力学模拟方法研究了镍涂覆单壁碳纳米管(SWCNTs)增强镁基复合材料的力学行为.结果表明,镍涂覆SWCNT/Mg复合材料的杨氏模量显著大于未涂覆SWCNT/Mg复合材料的杨氏模量,在碳纳米管表面修饰的Ni涂层可有效传递碳纳米管和Mg基体之间的载荷.此外,还研究了Ni涂层数对SWCNT/Mg复合材料界面结合强度的影响.对于不同Ni涂层数,即无Ni涂层、1层Ni涂层和2层Ni涂层,涂覆1层Ni和2层Ni的SWCNT从Mg基体中完全拔出后的界面结合强度分别约为无Ni涂层SWCNT/Mg复合材料界面结合强度的3.9和11.9倍.  相似文献   

10.
碳纳米管增强铜基复合材料的载流摩擦磨损性能研究   总被引:1,自引:1,他引:0  
采用粉末冶金方法制备了碳纳米管增强铜基复合材料(CNT/Cu),碳纳米管的体积分数分别为0%、5%、10%、12%和15%,在HST100载流摩擦磨损试验机上考察了有无电流2种状态下复合材料的摩擦磨损性能.结果表明:有电流条件下的摩擦系数和磨损率均比无电流条件下大,且表面磨损严重;载流条件下,随碳纳米管体积分数的增加,复合材料的摩擦系数和磨损率均降低,主导磨损形式由电气磨损逐渐过渡到黏着磨损.碳纳米管在复合材料中起到增强、减摩的作用.  相似文献   

11.
The paper presents an analytical method to investigate thermal effects on interfacial stress transfer characteristics of single/multi-walled carbon nanotubes/polymer composites system under thermal loading by means of thermoelastic theory and conventional fiber pullout models. In example calculations, the mechanical properties and the thermal expansion coefficients of carbon nanotubes and polymer matrix are, respectively, treated as the functions of temperature change. Numerical examples show that the interfacial shear stress transfer behavior can be described and affected by several parameters such as the temperature field, volume fraction of CNT, and numbers of wall layer and the outermost radius of carbon nanotubes. From the results carried out it is found that mismatch of thermal expansion coefficients between the carbon nanotubes and polymer matrix may be more important in governing interfacial stress transfer characteristics of carbon nanotubes/polymer composite system.  相似文献   

12.
An analytical molecular structural mechanics model for the prediction of mechanical properties of defect-free carbon nanotubes is developed by incorporating the modified Morse potential with an analytical molecular structural model. The developed model is capable of predicting Young’s moduli, Poisson’s ratios and stress–strain relationships of carbon nanotubes under tension and torsion loading conditions. Results on the mechanical properties of single-walled carbon nanotubes show that Young’s moduli of carbon nanotubes are sensitive to the tube diameter and the helicity. Young’s moduli of both armchair and zigzag carbon nanotubes increase monotonically and approach Young’s modulus of graphite when the tube diameter is increased. The nonlinear stress–strain relationships for defect-free nanotubes have been predicted, which gives a good approximation on the ultimate strength and strain to failure of nanotubes. Armchair nanotubes exhibit higher tensile strength than zigzag nanotubes but their torsion strengths are identical based on the present study. The present theoretical investigation provides a very simple approach to predict the mechanical properties of carbon nanotubes.  相似文献   

13.
The excellent properties of carbon nanotubes have generated technological interests in the development of nanotube/rubber composites. This paper describes a finite element formulation that is appropriate for the numerical prediction of the mechanical behavior of rubber-like materials which are reinforced with single walled carbon nanotubes. The considered composite material consists of continuous aligned single walled carbon nanotubes which are uniformly distributed within the rubber material. It is assumed that the carbon nanotubes are imperfectly bonded with the matrix. Based on the micromechanical theory, the mechanical behavior of the composite may be predicted by utilizing a representative volume element. Within the representative volume element, the reinforcement is modeled according to its atomistic microstructure. Therefore, non-linear spring-based line elements are employed to simulate the discrete geometrical structure and behavior of the single-walled carbon nanotube. On the other hand, the matrix is modeled as a continuum medium by utilizing solid elements. In order to describe its behavior an appropriate constitutive material model is adopted. Finally, the interfacial region is simulated via the use of special joint elements of variable stiffness which interconnect the two materials in a discrete manner. Using the proposed multi-scale model, the stress-strain behavior for various values of reinforcement volume fraction and interfacial stiffness is extracted. The influence of the single walled carbon nanotube addition within the rubber is clearly illustrated and discussed.  相似文献   

14.
龙文元  汪正飞  颜燕华 《应用力学学报》2020,(2):793-800,I0023,I0024
基于均匀化理论,建立了碳纳米管增强Nb-Si基复合材料的代表体积元模型,并采用剪切滞后模型对碳纳米管增强Nb-Si基复合材料界面上的应力分布和传递机制进行了研究,探讨了分子间作用力、杨氏模量比β、长径比α、体积分数?等对其应力分布和传递机制的影响。结果表明,复合材料界面应力分布的变化主要集中在碳纳米管的两端,最大的应力都是分布在加载端或拔出端,然后向另一端传递;分子间作用力、杨氏模量比、长径比、体积分数等参数对界面应力的传递均有一定的影响,其中长径比和体积分数的影响最明显,体积分数为0.02时拔出端的界面剪切应力值相对于体积分数为0.0025时增大幅度达到近7倍,而长径比从200减小到50时,其应力传递距离增大了近8倍。  相似文献   

15.
Nanocomposites manufactured by combining two nano-structured phases are quite rare. While industry is seeking materials to meet difficult challenges with unique properties, there is no “rule of mixtures” to identify how to mix multiple nanomaterials in a composite structure and make available all required properties. Filler–matrix adhesion and its relation to materials’ properties have been the subject of continuing study due to composites advanced applications. Further on, studies at the interphase created in the area between the constituent materials can provide important information concerning materials interaction and composites behavior; this issue becomes even more interesting when discussing about nano-interphases. In the present investigation, a study of multi-layered nanocomposites is conducted. More precisely, the following four different types of multilayered hybrid nanocomposites were manufactured and tested: Pure titanium–carbon nanotubes–epoxy; pure titanium–epoxy–carbon nanotubes; titanium dioxide nanotubes–carbon nanotubes–epoxy and titanium dioxide nanotubes–epoxy–carbon nanotubes. The nano-mechanical properties of the above-mentioned nanocomposites were investigated using nanoindentation technique. The main conclusion of the present work is that in the case of multilayered nanocomposites, even if nanoindentation is executed on the surface of the same material, results greatly depend on the underlying substrates’ nature and their stacking sequence. Also, nano-interphases created at the contact surfaces between different layers affect the experimentally measured values of the nanomechanical properties (Young’s modulus and hardness) of multilayered nanocomposites.  相似文献   

16.
The multi-scale deformation and interfacial mechanical behavior of carbon nanotube fibers with multi-level structures are investigated by experimental and theoretical methods. Multi-scale experiments including uniaxial tensile testing, in situ Raman spectroscopy, and scanning electron microscopy are conducted to measure the mechanical response of multi-level structures within the fiber under tension. A two-level interfacial mechanical model is then presented to analyze the interfacial bonding strength of mesoscopic bundles and microscopic nanotubes. The evolution characteristics of multi-scale deformation of the fiber are described based on experimental characterization and interfacial strength analysis. The strengthening mechanism of the fiber is further studied. Comprehensive analysis shows that the property of multi-level interfaces is a critical factor for the fiber strength and toughness. Finally, the method of improving the mechanical properties of fiber-based materials is discussed. The result can be used to guide multi-level interface engineering of carbon nanotube fibers and fiber-based composites to produce high performance materials.  相似文献   

17.
The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization method in two steps. Homogenization is performed in different coordinate systems, the cylindrical and the Cartesian, and a numerical example are presented.  相似文献   

18.
双马来酰亚胺树脂是高性能碳纤维复合材料的新型基体材料,在航空航天等领域具有广泛的应用。目前,相关材料的改性技术、制备工艺以及材料性能等考察仍以实验为主,数值模型及相应的分析方法则相对较少。本文构建了4,4′—二苯甲烷双马来酰亚胺(BDM)和二烯丙基双酚A(DABPA,固化剂)的分子尺度数值模型,实现了与实验过程基本一致的交联反应过程,考察了BDM/DABPA树脂材料的力学性质以及由碳纳米管填充所引起的强化规律和机理。结果表明,树脂材料的力学性质随着交联程度的提高而增加,而短碳纳米管的掺杂也可以进一步增强力学性质。研究工作为基于双马树脂的复合材料设计构建了数值分析技术,为相关材料的性能改进从微观层次提供了有价值的参考。  相似文献   

19.
范德华力对多壁纳米碳管力学性质的影响   总被引:2,自引:0,他引:2  
用分子动力学方法模拟了多壁纳米碳管在压缩、弯曲变形下力与变形的关系.通过与组成多壁碳管的各单壁碳管的比较分析,揭示了多壁纳米碳管层间范德华力对碳管力学性质的影响.采用Tersoff-Brenner势描述每一单壁纳米碳管内原子间作用,采用Lennard-Jones势描述碳管壁间范德华力.计算结果表明:多壁纳米碳管的比强度明显高于单壁纳米碳管.纳米碳管的半径虽然对杨氏模量影响不大,但对纳米碳管的曲屈行为影响却相当显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号