首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用双重互易边界元法结合精细积分法求解二维含热源的瞬态热传导问题。针对边界积分方程中热源项和温度关于时间导数项引起的域积分,采用双重互易法处理,将域积分转换为边界积分。采用边界元法将边界积分方程离散后,得到关于时间的微分方程组,并利用精细积分法处理其中的指数型矩阵;对于微分方程组中由边界条件和热源项引起的非齐次项,采用解析的方法计算。为了比较精细积分-双重互易边界元法的计算效果,同时使用有限差分法计算温度对时间的导数项。通过数值算例验证了本文方法的有效性和精确性。计算结果表明:时间步长对于精细积分-双重互易边界元法的结果影响较小,而有限差分法对时间步长比较敏感且只在时间步长选取较小时有效;当选取较大时间步长时,精细积分-双重互易边界元法依然具有良好的计算精度。  相似文献   

2.
粗糙表面之间接触热阻反问题研究   总被引:4,自引:1,他引:3  
当两个固体表面相互接触时,由于接触面粗糙度的影响,界面间就形成了非一致接触,这种接触导致热流收缩,进而产生接触热阻. 目前的理论研究主要集中在正问题研究,对反问题的研究相对较少. 接触热阻反问题研究是通过研究部分边界温度、热流和部分测量点的温度来反演得到界面上的接触热阻. 反问题研究在很多工程领域都有应用,如航空航天、机械制造、微电子等,是工程中确定接触热阻一种快速有效的方法. 本文采用边界元法和共轭梯度法研究了二维空间随坐标变化的接触热阻反问题. 为了验证方法的准确性和可行性,假定在已知部分测量点温度和真实接触热阻的情况下,反演计算得到界面的温度和热流,进而得到接触热阻,并与真实接触热阻进行比较. 结果表明采用边界元法和共轭梯度法在无测量误差的情况下,可以准确反演获得界面的真实接触热阻. 若存在测量误差,反演计算结果对测量误差极其敏感,反演结果误差会由于测量误差的引入而被放大. 为处理这种不适定性, 采用最小二乘法对反演计算结果进行校正,结果表明采用最小二乘法能够避开反问题中一些偏离实际值较大的测量点,显著提高反演计算结果的准确性.   相似文献   

3.
采用流固耦合方法对跨音速颤振进行了数值模拟。流体方面在非结构网格上用有限体积方法求解了Euler方程;结构方面则求解了后掠机翼典型剖面的结构模态方程。时间推进采用双时间步长:对每一真实时间步,都通过基于聚合多重网格方法的伪时间步推进,对流体和结构方程交替迭代.得到一个稳态的流固耦合的解。文章最后给出了NACA64A010翼型剖面的跨音速颤振边界.与相关文献的计算结果符合良好。  相似文献   

4.
动力时程分析中,在几个相邻的等长时间步之间对加速度的变化规律用多项式插值来描叙,经过推导可求解得到整个时间域上的动力方程的解答.根据泰勒展开原理分析表明,随着所取多项式次数的增加,收敛精度增高,计算步长适当放大,截断误差仍能在容许的范围之内.但是随着所取多项式次数增大,其算法的稳定域减少, 计算步长受到了此小稳定域的限制,收敛精度不再是所取计算步长宽度的决定因素,稳定域大小成了所取计算步长宽度的决定因素.因为一旦步长超出了此小稳定域范围,虽然在每个时间步内的截断误差不大,其传递的误差却会被放大到很多倍,最后导致计算结果严重失真.分析结果显示,多项式插值次数采用到步长的三次时,与一次多项式插值(对应线性加速度法)和二次多项式插值(对应二次加速度法)的分析方法相比,算法的稳定域急剧变窄,为h/T≤0.0099(h为计算步长,T为结构的固有周期),此小稳定域限制了计算步长的选择范围,其收敛精度很高因此可放大计算步长的优势无法施展.本文推导了三次加速度法的求解过程,进行了一个理想单自由度系统的动力时程分析计算,验证了结论的正确性.表明同时考虑收敛精度和稳定域来确定计算步长的宽度时,二次加速度法为优.  相似文献   

5.
成层半空间出平面自由波场的一维化时域算法   总被引:7,自引:0,他引:7  
刘晶波  王艳 《力学学报》2006,38(2):219-225
提出了一种计算出平面SH波斜入射时弹性水平成层半空间中自由波场时域计算的一维化有 限元方法. 在进行有限元网格划分时,竖向单元取满足有限元模拟精度的任意尺寸,水平向 网格尺寸由时间离散步长和水平视波速确定,并自动进行虚拟网格划分. 基底设置人工边界, 并将波动输入转化为等效荷载施加在边界节点上. 然后将集中质量有限元法和中心差分法相 结合建立节点运动方程,并将水平方向相邻节点的运动用该节点相邻时刻的运动表示,从而 将求解节点运动的二维方程组转化为一维方程组. 求解此方程组,即得到自由场中竖向一列 节点的运动. 最后根据行波传播的特点,可方便地确定全部自由波场. 理论分析和数值算例 表明,该方法具有较高的精度和良好的稳定性.  相似文献   

6.
建立了一种求解非线性动力系统高精度数值计算的新方法,重构了等价的非线性动力系统方程,该方程考虑了非线性函数的任意高阶项,并给出了该方程的Duhamel积分表达式,在时间步长内用Newton-Raphson法进行数值迭代求解,该方法能连续满足微分方程而不只是在离散的步长端点满足方程,从而打破了传统的Euler型有限差分法。计算实例表明,该方法计算精度高于传统的Runge-Kutta,Newmark-β和Wilson-θ等方法。  相似文献   

7.
爆炸冲击波遇到固壁,依次发生正规和非正规反射。本文中基于镜像方法,将爆炸冲击波在固壁反射等效为真实和虚拟爆炸流场的相互作用,建立了波后流场的理论计算方法。首先,假定反射波是以虚拟爆源为中心的圆弧,马赫杆是以爆心在固壁投影点为中心的圆弧。然后,根据爆炸自由场传播规律,利用基于几何近似的方法,建立流场中冲击波结构随时间演化的计算方法,确定任意时刻波后流场区域。最后,利用新发展的叠加模型LAMBR (LAMB?revisied),将真实和虚拟爆炸流场进行叠加,给出波后流场中的压力、密度和速度等物理量。通过与数值模拟结果和已有数据进行对比,发现该方法得到的流场物理量分布、峰值等能够反映流场发展的主要规律,从而验证了该理论方法的合理性。而且,该理论方法所需的时间相较于数值模拟大大缩短。  相似文献   

8.
谷岩  陈文 《力学学报》2012,44(2):351-360
奇异边界法是与基本解法相对应的一种边界型无网格数值离散方法. 该方法提出了源点强度因子的概念, 克服了传统基本解方法中最复杂最头疼的虚拟边界问题.基于边界元法中处理奇异积分的数值处理技术, 导出了源点强度因子的解析表达式, 提出了改进的无网格奇异边界法, 并进一步将该方法应用于三维位势问题. 该方法消除了传统方法中样本点的选取, 在不增加计算量的前提下, 极大地提高了奇异边界法的计算精度与稳定性.   相似文献   

9.
分步算法已被广泛应用于数值求解不可压缩N-S方程. Guermond等认为时间步长必须大于 某个临界值方能使算法稳定. 然而在高黏性流动模拟中,已有的显式和半隐式分步算法由于 其显式本质,必须采用小时间步长计算,不但降低了计算效率,同时也常与为使分步算法稳 分步算法已被广泛应用于数值求解不可压缩N-S方程. Guermond等认为时间步长必须大于 某个临界值方能使算法稳定. 然而在高黏性流动模拟中,已有的显式和半隐式分步算法由于 其显式本质,必须采用小时间步长计算,不但降低了计算效率,同时也常与为使分步算法稳 定必须满足的最小时间步长要求冲突. 本文目的是构造一种含迭代格式的分步算法,它能在 保证精度的前提下大幅度地增大时间步长. 方腔流和平面Poisseuille流数值计算结果证实 了此特点,该方法被有效应用于充填流动过程的数值模拟.  相似文献   

10.
针对本研究团队提出的时间步优化方法,在具备优化时间步长与外荷载同步变化特性的基础上,本文进一步分析了优化时间步长与计算精度的相关性。并且,基于收敛性、稳定性、计算精度和计算效率四个方面对时间步优化方法的优劣进行了评价,得出以下结论:采用时间步优化方法对原动力数值计算程序进行时间步优化后,可以在保证计算精度的同时,非常有效地提高计算效率;保证了计算的收敛性至少不低于原程序,而且在一定程度上提高了原程序的计算稳定性。  相似文献   

11.
Time‐splitting technique applied in the context of the semi‐Lagrangian semi‐implicit method allows the use of extended time steps mainly based on physical considerations and reduces the number of numerical operations at each time step such that it is approximately proportional to the number of the points of spatial grid. To control time growth of the additional truncation errors, the standard stabilizing correction method is modified with no penalty for accuracy and efficiency of the algorithm. A linear analysis shows that constructed scheme is stable for time steps up to 2h. Numerical integrations with actual atmospheric fields of pressure and wind confirm computational efficiency, extended stability and accuracy of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
石晟  杜东升  王曙光  李威威 《力学学报》2019,51(4):1223-1234
随机性普遍存在于实际工程问题中,而复杂结构的非线性随机响应分析是其中的一个难点,近年发展的概率密度演化方法为此类问题的求解提供了新的途径.由于实际问题的复杂性,概率密度演化方程通常采用数值方法求解,因此提高计算效率和求解精度对实际应用具有重要意义.本文基于变网格技术,推导了概率密度演化方程在非均匀时间步长上的总变差减小(total variation diminishing,TVD)差分格式,算例结果表明通过自适应插值可将迭代次数减少为原来的43.4%,当随机过程样本持续时间增大时均值估计的平均误差基本不变,而标准差估计的平均误差不断增大,但增大幅度不断减小;计算耗时随样本持续时间的增大也呈增大趋势,而由于使用了时间步长自适应插值算法导致有些情况下长持时样本的计算耗时反而比短持时样本的计算耗时短;在传统的脉冲函数型初值条件基础上,提出了一种高阶导数更稳定的余弦函数型初值条件形式.结果表明,脉冲函数型的初值条件是余弦函数型初值条件的一个特例,当参数取值适当时,余弦函数型初值条件的数值求解结果具有更高的精度.本文的工作进一步完善了概率密度演化方程的求解方法,为其在实际工程中的应用提供了基础.   相似文献   

13.
We present an improved immersed boundary method for simulating incompressible viscous flow around an arbitrarily moving body on a fixed computational grid. To achieve a large Courant–Friedrichs–Lewy number and to transfer quantities between Eulerian and Lagrangian domains effectively, we combined the feedback forcing scheme of the virtual boundary method with Peskin's regularized delta function approach. Stability analysis of the proposed method was carried out for various types of regularized delta functions. The stability regime of the 4‐point regularized delta function was much wider than that of the 2‐point delta function. An optimum regime of the feedback forcing is suggested on the basis of the analysis of stability limits and feedback forcing gains. The proposed method was implemented in a finite‐difference and fractional‐step context. The proposed method was tested on several flow problems, including the flow past a stationary cylinder, inline oscillation of a cylinder in a quiescent fluid, and transverse oscillation of a circular cylinder in a free‐stream. The findings were in excellent agreement with previous numerical and experimental results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We present a strong form meshless solver for numerical solution of the nonstationary, incompressible, viscous Navier–Stokes equations in two (2D) and three dimensions (3D). We solve the flow equations in their stream function-vorticity (in 2D) and vector potential-vorticity (in 3D) formulation, by extending to 3D flows the boundary condition-enforced immersed boundary method, originally introduced in the literature for 2D problems. We use a Cartesian grid, uniform or locally refined, to discretize the spatial domain. We apply an explicit time integration scheme to update the transient vorticity equations, and we solve the Poisson type equation for the stream function or vector potential field using the meshless point collocation method. Spatial derivatives of the unknown field functions are computed using the discretization-corrected particle strength exchange method. We verify the accuracy of the proposed numerical scheme through commonly used benchmark and example problems. Excellent agreement with the data from the literature was achieved. The proposed method was shown to be very efficient, having relatively large critical time steps.  相似文献   

15.
Gurtin变分原理在矩形板动力初值问题中的应用   总被引:3,自引:0,他引:3  
结构动力分析是工程设计中的重要组成部分,传统动力分析方法并不能全面反映动力初值特征,而Gurtin变分原理则被认为是目前唯一能全面反映动力初值特征的变分原理。本文基于位移型Gurtin变分原理,对空间和时间同时离散,建立了一种求解板的动力初值问题的时空有限元法,并对两种边界情况板的振动问题进行了编程计算,计算结果表明时空元法精确度很高且稳定收敛。  相似文献   

16.
The effects of non-Newtonian behaviour of a fluid and unsteadiness on flow in a channel with non-uniform cross-section have been investigated. The rheological behaviour of the fluid is assumed to be described by the constitutive equation of a viscoelastic fluid obeying the Oldroyd-B model. The finite element method is used to analyse the flow. The novel features of the present method are the adoption of the velocity correction technique for the momentum equations and of the two-step explicit scheme for the extra stress equations. This approach makes the computational scheme simple in algorithmic structure, which therefore implies that the present technique is capable of handling large-scale problems. The scheme is completed by the introduction of balancing tensor diffusivity (wherever necessary) in the momentum equations. It is important to mention that the proper boundary condition for pressure (at the outlet) has been developed to solve the pressure Poisson equation, and then the results for velocity, pressure and extra stress fields have been computed for different values of the Weissenberg number, viscosity due to elasticity, etc. Finally, it is pertinent to point out that the present numerical scheme, along with the proper boundary condition for pressure developed here, demonstrates its versatility and suitability for analysing the unsteady flow of viscoelastic fluid through a channel with non-uniform cross-section.  相似文献   

17.
双相各向异性介质弹性波场有限差分正演模拟   总被引:3,自引:0,他引:3  
从双相各向异性介质模型出发,以Boit理论为基础,推导了斜方晶系各向异性介质-阶弹性波动方程,引入固、流体密度比和孔隙几何参数,将Biot方程系数简化为测量简单、物理意义明确的物理量,采用交错网格技术建立了各向异性孔隙介质波动方程的高精度差分格式,并首次对这类差分格式的频散特性和稳定性作了详细分析讨论,解决了计算稳定性和边界反射问题,与解析解的对比以及理论模型的数值模拟都表明,该方法不仅大大降低了计算量,提高了正演速度,并且具有良好的稳定性和精确性。  相似文献   

18.
For the incompressible Navier–Stokes equations, vorticity‐based formulations have many attractive features over primitive‐variable velocity–pressure formulations. However, some features interfere with the use of the numerical methods based on the vorticity formulations, one of them being the lack of a boundary conditions on vorticity. In this paper, a novel approach is presented to solve the velocity–vorticity integro‐differential formulations. The general numerical method is based on standard finite volume scheme. The velocities needed at the vertexes of each control volume are calculated by a so‐called generalized Biot–Savart formula combined with a fast summation algorithm, which makes the velocity boundary conditions implicitly satisfied by maintaining the kinematic compatibility of the velocity and vorticity fields. The well‐known fractional step approaches are used to solve the vorticity transport equation. The paper describes in detail how we accurately impose no normal‐flow and no tangential‐flow boundary conditions. We impose a no‐flux boundary condition on solid objects by the introduction of a proper amount of vorticity at wall. The diffusion term in the transport equation is treated implicitly using a conservative finite update. The diffusive fluxes of vorticity into flow domain from solid boundaries are determined by an iterative process in order to satisfy the no tangential‐flow boundary condition. As application examples, the impulsively started flows through a flat plate and a circular cylinder are computed using the method. The present results are compared with the analytical solution and other numerical results and show good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

20.
A frequent configuration in computational fluid mechanics combines an explicit time advancing scheme for accuracy purposes and a computational grid with a very small portion of much smaller elements than in the remaining mesh. Two examples of such situations are the travel of a discontinuity followed by a moving mesh, and the large eddy simulation of high Reynolds number flows around bluff bodies where together very thin boundary layers and vortices of much more important size need to be captured. For such configurations, multistage explicit time advancing schemes with global time stepping are very accurate but very CPU consuming. In order to reduce this problem, the multirate (MR) time stepping approach represents an interesting improvement. The objective of such schemes, which allow to use different time steps in the computational domain, is to avoid penalizing the computational cost of the time advancement of unsteady solutions that would become large due to the use of small global time steps imposed by the smallest elements such as those constituting the boundary layers. In the present work, a new MR scheme based on control volume agglomeration is proposed for the solution of the compressible Navier-Stokes equations equipped with turbulence models. The method relies on a prediction step where large time steps are performed with an evaluation of the fluxes on macrocells for the smaller elements for stability purpose and a correction step in which small time steps are employed. The accuracy and efficiency of the proposed method are evaluated on several benchmarks flows: the problem of a moving contact discontinuity (inviscid flow), the computation with a hybrid turbulence model of flows around bluff bodies like a flow around a space probe model at Reynolds number 106, a circular cylinder at Reynolds number 8.4 × 106, and two tandem cylinders at Reynolds number 1.66 × 105 and 1.4 × 105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号