首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以Q235钢制U型缺口板试样为研究对象,用有限元方法计算其缺口根部等效应变幅对应的试样标距段位移,以此控制试验机进行拉压循环疲劳试验。然后用局部应力应变法对试验测得的寿命结果进行分析。结果表明:无论用有限元还是修正Neuber公式计算缺口根部的应力应变,局部应力应变法的疲劳寿命评估只适用于缺口半径较大的试样;对缺口半径较小试样的估计寿命明显低于实测值,且有限元法比修正Neuber法更保守。进而又对试样缺口区域应变梯度的影响进行了探讨:参照有限元计算的应变梯度,利用Taylor模型估算了缺口根部的屈服应力和流动应力;在此基础上重新计算应变分布并估计试样的疲劳寿命,结果证实考虑应变梯度影响可改善缺口试样的疲劳寿命估计。  相似文献   

2.
陈少华  李咏芳 《力学学报》2000,32(4):412-419
利用Kuowles与Sternberg提出的非线性弹性大变形应变能函数,对橡胶楔体与刚性缺口接触问题进行大变形渐近分析,推导了楔体尖端场的渐近方程,得到楔体尖端附近的应力应变场及应力的奇异性指数与橡胶楔体角度、刚性缺口角度及材料常数有关的表达式;楔尖附近同一半径上应力分量为常数,同时,利用非线性有限元理论编制了大变形有限元程序,考虑楔体尖端与缺口接触边界条件,计算得到了与分析解一致的结论,当缺口角  相似文献   

3.
飞机轮胎爆破压力场分布模型对于飞机轮胎强度计算和起落架舱内防护设计至关重要。本文开展某型飞机起落架舱内轮胎爆破试验研究,利用高频动压传感器测试防护罩上关键点处的压力值,建立了轮胎爆破气流场压力分布模型,最后采用有限元方法对防护罩结构进行数值模拟并与试验结果对比分析。结果发现,航空轮胎爆破时间短暂但威力巨大,起落架舱内轮胎爆破最大压力值随初始压力和爆破距离呈指数关系衰减。根据试验结果分别提出了斜交胎、子午胎的爆破压力场分布模型并对防护罩进行了数值计算,所得应变值与数值结果误差在12%以内,说明所提出的压力场分布模型可用于起落架舱内防护罩设计。本文所提出的试验方法及爆破压力场分布模型为起落架舱内防护设计提供了参考依据。  相似文献   

4.
缺口件疲劳寿命分布预测的有效应力法   总被引:1,自引:0,他引:1  
本文提出了一种由光滑件疲劳寿命试验数据预测缺口件疲劳寿命分布的有效应力法。该方法中缺口件的裂纹可能萌生表面被分解成一个个微元,整个表面可看成是这些微元组成的一个串联模型,按照串联概率失效模型,缺口件的疲劳强度失效概率就可以由各微元的疲劳强度失效概率计算得到,其中微元的疲劳强度失效概率是由光滑件的疲劳强度失效概率通过最弱环节理论计算得到的。在缺口件的疲劳强度失效概率表达式中,引入了有效应力的概念,用它查取光滑件的疲劳寿命试验数据就可以直接得到缺口件的疲劳寿命分布。该方法可以同时考虑到应力梯度和试件尺寸对缺口件疲劳寿命分布的影响。进行了材料LY12CZ的带中心孔缺口件的寿命算例分析,预测结果和试验结果吻合良好,表明该方法是有效的。  相似文献   

5.
静止裂纹尖端实验的HRR奇异场   总被引:1,自引:0,他引:1  
用近代光学试验方法(面内云纹和投影云纹),测量了不同应变硬化指数材料(n=3.350~9.180)、平面应力Ⅰ型双边裂纹试件、裂纹尖端附近位移场和应变场。由试验结果分析了裂纹尖端位移奇异性,得到J主导区和围绕裂纹尖端附近HRR场分布。分析了HRR分布随载荷、材料不同的变化规律。  相似文献   

6.
本文用有限元法对歼击机机翼主梁试件进行了弹塑性分析,并用局部应变法对主梁试件的裂纹形成寿命进行了估算.在估算中比较了不同的损伤计算方法,考虑了缺口表面双轴应力和平均应力的影响.寿命估算结果和25级程序加载及6级程序加载的试验进行了比较.结果是吻合的,计算寿命与试验寿命相差在系数为3数的分散带内.  相似文献   

7.
利用数字图像相关方法测量表面带孔洞、裂纹、缺口等缺陷试样的全场变形是许多实际测量任务中经常遇到的问题.就此问题,本文阐述了一种先对要避免计算的缺陷区域进行标记,在随后进行的相关计算中直接避免这些标记区域的方法.在已计算得到全场位移的情况下,文中提出了基于局部位移场最小二乘拟合的方法来计算区域边界、孔洞、裂纹或缺口附近等区域应变.最后对单侧边带半圆缺口试样的单向疲劳拉伸实验的计算结果充分显示本文方法的有效性和可靠性.  相似文献   

8.
介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据.  相似文献   

9.
数字图像相关分析法增量位移场测试技术   总被引:1,自引:0,他引:1  
利用位移场的连续性,对亚像素位移场的算法进行了一些改进,设计了一套分步计算位移场、应变场的测量计算方法,较好地解决了数字图像相关分析法计算精度和效率.采用增量位移场叠加的方法计算大应变位移场,采用局部平面拟合的方法计算应变场.通过对高分子材料拉伸试验位移场的测量和结果标定,说明该方法具有较强的实用性和计算精度.同时,由于避免了对亚像素点的搜索,大大提高了计算效率.  相似文献   

10.
利用数字图像相关方法测量表面带孔洞、裂纹、缺口等缺陷试样的全场变形是许多实际测量任务中经常遇到的问题。就此问题,本文阐述了一种先对要避免计算的缺陷区域进行标记,在随后进行的相关计算中直接避免这些标记区域的方法。在已计算得到全场位移的情况下,文中提出了基于局部位移场最小二乘拟合的方法来计算区域边界、孔洞、裂纹或缺口附近等区域应变。最后对单侧边带半圆缺口试样的单向疲劳拉伸实验的计算结果充分显示本文方法的有效性和可靠性。  相似文献   

11.
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones, notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode II component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.  相似文献   

12.
This paper provides a comprehensive evaluation of nonlinear stress fields in the neighbourhood of out-of-plane loaded notches with different opening angles, with the effect of varying notch root radius being included. Taking advantage of the unified analytical frame, stress and strain distributions ahead of the notch tip are determined for different nonlinear material laws, those most commonly used by engineers engaged in nonlinear notch analyses. Some well-known solutions due to Neuber and Rice, as well as some recent developments by the present authors can be seen as particular cases of the general approach presented herein. A discussion focused on the shape and the extension of the plastic zone ahead of the notches is also included.  相似文献   

13.
Plastic zones in notched compact specimens were made visible by recrystallization. The material tested was annealed AlMgSil alloy. The shape and dimensions of the zones as well as the distribution of plastic deformation were studied as a function of notch geometry (notch tip radius, depth of the notch) and of the distance measured from the surface of the specimens. The advantages and limits of the recrystallization method are discussed.  相似文献   

14.
The physical nature of a crack tip is not absolutely sharp but blunt with finite curvature. In this paper, the effects of crack-tip shape on the stress and deformation fields ahead of blunted cracks in glassy polymers are numerically investigated under Mode I loading and small scale yielding conditions. An elastic–viscoplastic constitutive model accounting for the strain softening upon yield and then the subsequently strain hardening is adopted and two typical glassy polymers, one with strain hardening and the other with strain softening–rehardening are considered in analysis. It is shown that the profile of crack tip has obvious effect on the near-tip plastic field. The size of near-tip plastic zone reduces with the increase of curvature radius of crack tip, while the plastic strain rate and the stresses near crack tip enhance obviously for two typical polymers. Also, the plastic energy dissipation behavior near cracks with different curvatures is discussed for both materials.  相似文献   

15.
When a fatigue crack is nucleated and propagates into the vicinity of the notch, the crack growth rate is generally higher than that can be expected by using the stress intensity factor concept. The current study attempted to describe the crack growth at notches quantitatively with a detailed consideration of the cyclic plasticity of the material. An elastic–plastic finite element analysis was conducted to obtain the stress and strain histories of the notched component. A single multiaxial fatigue criterion was used to determine the crack initiation from the notch and the subsequent crack growth. Round compact specimens made of 1070 steel were subjected to Mode I cyclic loading with different R-ratios at room temperature. The approach developed was able to quantitatively capture the crack growth behavior near the notch. When the R-ratio was positive, the crack growth near a notch was mainly influenced by the plasticity created by the notch and the resulted fatigue damage during crack initiation. When the R-ratio was negative, the contact of the cracked surfaces during a part of a loading cycle reduced the cyclic plasticity of the material near the crack tip. The combined effect of notch plasticity and possible contact of cracked surface were responsible for the observed crack growth phenomenon near a notch.  相似文献   

16.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

17.
论文提出了用插值矩阵法计算幂硬化塑性材料反平面V形切口和裂纹尖端区域的应力奇异性.首先在切口和裂纹尖端区域采用自尖端径向度量的渐近位移场假设,将其代入塑性全量理论的基本微分方程后,推导出包含应力奇异性特征指数和特征角函数的非线性常微分方程特征值问题.然后采用插值矩阵法迭代求解导出的控制方程,得到一般的塑性材料反平面V形切口和裂纹的前若干阶应力奇异阶和相应的特征角函数,该法的重要优点是以上求解的特征角函数和它们各阶导函数具有同阶精度,并且一次性地求出前若干阶特征对.同时,插值矩阵法计算量小,易于和其他方法联合使用,这些优点在后续求解尖端区域完全应力场非常优越.论文方法的计算结果与现有结果对照,发现吻合良好,表明了论文方法的有效性.  相似文献   

18.
In the presence of sharp (zero radius) V-shaped notches the notch stress intensity factors (N-SIFs) quantify the intensities of the asymptotic linear elastic stress distributions. They are proportional to the limit of the mode I or II stress components multiplied by the distance powered 1  λi from the notch tip, λi being Williams’ eigenvalues. When the notch tip radius is different from zero, the definition is no longer valid from a theoretical point of view and the characteristic, singular, sharp-notch field diverges from the rounded-notch solution very next to the notch. Nevertheless, N-SIFs continue to be used as parameters governing fracture if the notch root radius is sufficiently small with respect to the notch depth.Taking advantage of a recent analytical formulation able to describe stress distributions ahead of rounded V-notches, the paper gives a generalized form for the notch stress intensity factors, in which not only the opening angle but also the tip radius dimension is explicitly involved. Such parameters quantify the stress redistribution due to the root radius with respect to the sharp notch case.  相似文献   

19.
In this work, the effect of constraint on hole growth near a notch tip in a ductile material under mode I and mixed mode loading (involving modes I and II) is investigated. To this end, a 2-D plane strain, modified boundary layer formulation is employed in which the mixed mode elastic KT field is prescribed as remote boundary conditions. A finite element procedure that accounts for finite deformations and rotations is used along with an appropriate version of J2 flow theory of plasticity with small elastic strains. Several analyses are carried out corresponding to different values of T-stress and remote elastic mode-mixity. The interaction between the notch and hole is studied by examining the distribution of hydrostatic stress and equivalent plastic strain in the ligament between the notch tip and the hole, as well as the growth of the hole. The implications of the above results on ductile fracture initiation due to micro-void coalescence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号