首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tuned liquid dampers (TLDs) are among the most economical and effective passive damping devices. They have been increasingly used to reduce dynamic response and protect structures from failure due to external dynamic excitations. Slat screens are one of the most effective devices used to increase the inherent damping of a TLD, and to reduce the non‐linearity of the free surface motion. A numerical algorithm has been developed to solve the complete non‐linear, moving boundary flow problem in a TLD outfitted with slat screens. The model has been developed to handle conditions leading from small to large interfacial deformations without imposing any linearization assumptions. The numerical algorithm is based on the finite‐difference method. The free surface has been determined using the volume‐of‐fluid method and the donor–acceptor algorithm. The effect of the slat screens has been modeled explicitly by using the partial‐cell treatment method. The present algorithm has been validated against experimental data. The results indicated that the present algorithm is capable of providing accurate details of the flow field inside the TLD and through the screens. These details are essential to improve our understanding of the important parameters governing the performance of a TLD, and hence, to enhance our ability to design better TLDs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman–Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure–TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.Shake table experiments are conducted on a rectangular and chamfered tank subjected to unidirectional base excitation. Comparisons of the experimental and predicted sloshing forces and energy dissipation per cycle indicate that the model is able to predict the fluid response at fluid depth ratios greater than h/L=0.10. Next, structure–TLD system tests are conducted and it is found that the model can predict the structural and TLD responses. The simulated and experimental results show that the TLD tank transfers energy between orthogonal structural sway modes.  相似文献   

3.
Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilitates the use of a TLD with a relatively small fluid mass and with feasible geometric dimensions to mitigate the lightly-damped edgewise vibrations effectively. In the present paper, modal expansions are carried out directly on the velocity field and the free surface of the sloshing liquid in the rotating coordinate system. A formulation has been proposed leading to coupled nonlinear ordinary differential equations, which have been obtained through the Galerkin variational approach together with the modal expansion technique. Two models, with one sloshing mode and three sloshing modes, have been studied in the numerical simulation. It is shown that the one-mode model is able to predict the sloshing force and the damped structural response accurately, since the primary damping effect on the structure is achieved by the first sloshing mode of the fluid. Although it is unable to predict the fluid free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades.  相似文献   

4.
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. Simple TLD tank geometries may not always be feasible due to space limitations. While the non-linear modelling of sloshing fluid is currently limited to tanks of simple geometries, this paper develops a non-linear multimodal model which describes the sloshing behaviour of a fluid in a flat-bottom tank of arbitrary geometry. The mode shapes of the sloshing fluid are found by solving the Helmholtz equation over the tank domain using the finite element method. The Bateman-Luke variational principle is used to develop a system of ordinary differential equations which account for the coupling of the sloshing modes through the non-linear free surface boundary conditions. Damping is incorporated into the model by considering the drag produced on a set of damping screens inserted in the fluid. The system of ordinary differential equations is solved using the Runge-Kutta-Gill Method to predict the wave heights and sloshing forces. In general, the mode shapes in an arbitrary tank will have components in two orthogonal (x- and y-) directions. This out-of-plane behaviour is an important consideration for TLD design. The model is validated with existing models for the special cases of rectangular and circular tanks. Lastly, new shake table tests are conducted on a tank of complex geometry.  相似文献   

5.
Hara  Kensuke  Watanabe  Masahiro 《Nonlinear dynamics》2020,99(3):2065-2081
Nonlinear Dynamics - The nonlinear sloshing problem is an important issue for design of liquid storage tanks, liquid cargo transportations, tuned liquid dampers and so on. This paper is concerned...  相似文献   

6.
电流变阻尼器动力特性的研究   总被引:6,自引:0,他引:6  
电流变液是一种可控流体,它在电场的作用下可从牛顿流体变为屈服剪应力较高的粘塑性体,且这种变化连续,可逆,迅速。本文在简要介绍了电流变阻尼器的原理和特点后,就电流变阻尼器的动力特性,如流量和阻尼力等,建立模型,将流体流动分为剪切流动和压差流动两种情况进行了讨论,并进行迭加,使流量和阻尼计算公式得到修正和完善,最后对阻尼力进行简化,提出压差流动占绝对优势,完全可以反映电流变阻尼器的阻尼特性,为进一步实现对阻尼器的控制提供了理论基础。  相似文献   

7.
Semi-active rotary damper for a heavy off-road wheeled vehicle   总被引:1,自引:0,他引:1  
The development, simulation and laboratory testing of two-state discrete adjustable semi-active rotary dampers for heavy off-road wheeled vehicles, which is a joint venture between the South African based company Reumech Ermetek and Horstman Defence Systems from the UK, is described. A brief history of semi-active damping and rotary dampers is given, after which the working principle and features of combining the two technologies is outlined. Three dimensional simulation is used to determine the ride comfort gains achievable with semi-active rotary dampers compared to the conventional translational dampers currently used on the vehicle under consideration. Simulations are performed over different terrains, including the APG track and discrete obstacles. Semi-active rotary dampers were integrated on the 6×6 GV6 Self-propelled Gun Howitzer in order to quantify the improvements in ride comfort, transient response and handling of the vehicle as indicated by the simulation results. The control system, control strategies and characterisation tests, which includes determination of on and off characteristics as well as valve response times, are discussed.  相似文献   

8.
Ding  Hao  Wang  Jin-Ting  Lu  Li-Qiao  Pan  Jian-Wen 《Nonlinear dynamics》2021,104(4):3365-3384
Nonlinear Dynamics - Conventional tuned liquid column dampers (TLCDs) are deficient in multidirectionality. In contrast, toroidal TLCDs are designed to extend the application to multidirectional...  相似文献   

9.
Optimal problems are investigated in the present work in order to control the natural frequencies of a torsional shaft system including the total weight constraint and effects of tuned mass dampers. Maier objective functional is used. Pontryagin’s Maximum Principle is employed to derive necessary optimality conditions of the optimal problems. Numerical simulations are performed to study effects of tuned mass dampers on controlling natural frequencies as well as minimizing the system’s weight. Advantages of the proposed method are also discussed.  相似文献   

10.
建筑结构被动控制发展动态   总被引:3,自引:0,他引:3  
蔡国平  孙峰  王超 《力学与实践》2000,22(2):6-12,22
本文对建筑结构被动控制发展过程和动态者综述,主要介绍了建筑结构被动控制中常用的金属屈服阻尼器、摩擦阻尼器、可调质量阻尼器、粘弹性阻尼器、可调流体阻尼顺和粘性液体阻尼器。  相似文献   

11.
根据列车具体的轴距和轴重,建立了和谐号动车组CRH380AL型列车简化模型;对高速铁路两跨连续梁桥采用多自由度欧拉伯努利梁单元进行主梁的模拟,并将液体黏滞阻尼器模拟为有限元阻尼单元;采用Newmark直接积分方法求解了高速列车作用下的连续梁桥运动方程,数值分析了列车车速以及液体黏滞阻尼器的阻尼系数对于高速铁路连续梁桥振动响应的影响。结果表明:黏滞阻尼器对于桥梁具有明显的减振效果,阻尼力不仅与阻尼系数有关还与列车时速有关;同一黏滞阻尼器条件下,桥梁的最大加速度并不随列车速度的增加而单调增加,而是在某些特定列车车速下桥梁的最大加速度出现了峰值,且随着黏滞阻尼器的阻尼系数增大,桥梁振动响应峰值处的最大加速度减幅不同;同一列车时速的条件下,桥梁的减振效果并不是随着阻尼系数的递增呈正比递增,而是随着阻尼系数的增大,阻尼器的减振效果增幅在减小。  相似文献   

12.
基于广义预测控制的结构半主动控制研究   总被引:2,自引:0,他引:2  
相对于主动控制和被动控制来讲,半主动控制具有一些更好的特色,对结构控制的应用有着较强的吸引力。本文以可调液柱阻尼器(TLCD)作为作动器来实现结构半主动控制,考虑到TLCD具有非线性阻尼特性,为了使结构控制能够顺利实现,本文采用了阶跃控制函数。为了使TLCD能够应用于实际结构,本文研究了基于离散状态方程的广义预测控制方法,并提出了单向控制策略。本文最后给出了计算实例。算例表明这一方法是有效的。  相似文献   

13.
A generalized nonlinear model is formulated for the dynamic analysis of suspension seats with passive, semi-active and active dampers. The model incorporates coulomb friction due to suspension linkages and bushings, forces arising from interactions with the elastic limit stops, a linear suspension spring and nonlinear damping force for passive, semi-active and active dampers, while the contribution due to biodynamics of the human operator is considered to be negligible. The semi-active and active dampers are characterized by force generators in accordance with the control laws based upon suspension mass velocity. Two different suspension seats are experimentally assessed in the laboratory under sinusoidal and random excitations arising from an urban bus, and the measured data is used to demonstrate the validity of the proposed generalized model. The results showed reasonably good agreement between the model results and the measured data. Optimal model parameters are selected using the sequential unconstrained minimization technique with an objective to minimize the acceleration due to vibration transmitted to the occupant mass. The comfort and safety performance characteristics of the optimal suspension seat with semi-active and active dampers are evaluated under both the sinusoidal and random excitations based on the guidelines provided by ISO-2631. From these results, it is concluded that the comfort performance of a suspension seat with semi-active and active dampers can be considerably enhanced by 20–30%.  相似文献   

14.
Modeling of a magnetorheological damper by recursive lazy learning   总被引:1,自引:0,他引:1  
Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.  相似文献   

15.
This paper describes the further development and experimental evaluation of two-state semi-active translational dampers on a 6×6 high mobility off-road vehicle. As only ride comfort was enhanced during previous work, the low-speed damping characteristics on the semi-active damper was increased in order to improve vehicle handling. The existing passive dampers, as normally fitted to the test vehicle, were modified to the semi-active configuration by adding a bypass assembly and a controllable valve. Experimental work included driving over various repeatable surfaces at different speeds and executing severe lane change manoeuvres. Results indicated that both handling and ride comfort were improved when selecting the semi-active configuration.  相似文献   

16.
MR阻尼器的半主动控制研究   总被引:3,自引:0,他引:3  
任晓崧  凌海梅 《力学季刊》2001,22(4):471-476
MR阻尼器能提供可以调节的阻尼力,适合用作减少结构地震响应的半主动控制器。本文对MR阻尼器的半主动控制进行研究,提出了状态跳跃算法,根据结构响应的大小实现MR阻尼器的状态切换,使结构响应得到有效的控制。这种控制策略简便,不需要在线计算,便于实施。由于速度响应直接影响MR阻尼器的阻尼力,建议用速度响应作为MR阻尼器进行状态切换的变量。文中给出了两个算例,进行了计算分析和比较,说明了状态跳跃控制算法的特点。  相似文献   

17.
斜拉索振动控制中MR阻尼器选型的研究   总被引:3,自引:0,他引:3  
以全索全时段振动响应的均方根(RMS)评价MR阻尼器对斜拉索的减振效果。计算结果表明MR阻尼器型号是影响斜拉索减振效果的最主要因素。斜拉索的减振效果在选用合适的MR阻尼器时达到最佳。进而研究了MR阻尼器型号与阻尼器安装位置、施加的电压、斜拉索基频(张力、索长、质量)、激励荷载(类型、频率、幅值)等各种因素的关系,为MR阻尼器合理选型提供了优化设计的方法。型号选用主要是与斜拉索基频和MR阻尼器安装位置有关。在引起索基频变化的因素中,索质量对型号的选取影响最大;而索长对型号影响不大。对于索质量较大、张力较大、MR阻尼器安装位置较低、外界激励较大、频谱特征多变、低频为主时需要较强的MR阻尼器。进一步研究表明,半主动控制与开环控制的最优MR阻尼器型号有较好的一致性,因此半主动控制所选用的MR阻尼器型号可参照被动控制时最优MR阻尼器型号。  相似文献   

18.
粘滞阻尼器在大型复杂结构减震设计中应用广泛。由于粘滞阻尼器的非线性阻尼力特性,粘滞阻尼器减震结构非平稳随机地震反应分析是一个典型的局部非线性随机振动问题。利用减震结构动力响应时域显式表达式的降维列式优势,仅针对与粘滞阻尼器相关的局部自由度进行非线性迭代计算,提出了局部非线性随机振动问题的时域显式降维迭代随机模拟法,为设置粘滞阻尼器的大型复杂减震结构非线性地震反应分析提供一种高效的随机振动方法。以安装了四个纵桥向粘滞阻尼器的某主跨1200m悬索桥为工程实例,开展E2水准地震激励下的非线性随机振动分析。计算结果显示,设置阻尼器后,主梁的纵桥向位移得到明显控制,降幅达到80%,大桥的关键截面内力也有5%左右的降幅。  相似文献   

19.
针对一实际工程结构—大连国贸大厦,研究了风荷载作用下调液阻尼器的减振控制作用。首先建立了该结构的简化计算模型,利用Davenport谱给出了模拟风荷载;在大厦所处的位置进行多次测量,得到实际风速样本,选取其中风速较大、过程平稳的样本,对实测样本与模拟样本的频谱进行比较,验证了模拟风荷载的合理性。文中在大厦顶层设置浅水水箱,将其设计成可减少结构位移及加速度反应的控制装置TLD,以提高大厦在风荷载作用下的舒适度,并给出了高层建筑水箱减振方案实施的设计建议。数值计算结果表明,该大厦顶部设置TLD减振装置后,能有效地控制结构在风荷载作用下的反应。依据本文的TLD设计步骤,可供类似高层建筑进行TLD减小风振控制分析和设计时参考。  相似文献   

20.
Friction contacts are often used in turbomachinery design as passive damping systems. In particular, underplatform dampers are mechanical devices used to decrease the vibration amplitudes of bladed disks.Numerical codes are used to optimize during designing the underplatform damper effectiveness in order to limit the resonant stress level of the blades. In such codes, the contact model plays the most relevant role in calculation of the dissipated energy at friction interfaces. One of the most important contact parameters to consider in order to calculate the forced response of blades assembly is the static normal load acting at the contact, since its value strongly affects the area of the hysteresis loop of the tangential force, and therefore the amount of dissipation.A common procedure to estimate the static normal loads acting on underplatform dampers consists in decoupling the static and the dynamic balance of the damper. A preliminary static analysis of the contact is performed in order to get the static contact/gap status to use in the calculation, assuming that it does not change when vibration occurs.In this paper, a novel approach is proposed. The static and the dynamic displacements of the system (bladed disk+underplatform dampers) are coupled together during the forced response calculation. Static loads acting at the contacts follow from static displacements and no preliminary static analysis of the system is necessary.The proposed method is applied to a numerical test case representing a simplified bladed disk with underplatform dampers. Results are compared with those obtained with the classical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号